Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1

draft proposed American National Standard for
Information Systems—Programming
Language—Common Lisp

X3J13/94-101R

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Versions 15.17 (X3J18/94-101) and 15.17R (X3J13/94-101R) are absolutely
identical except for changes to the document number and date on the cover and
in each page’s header, addition of this disclaimer on the back of the cover page,
additions to the Edit and Review History on page Credits i, and changes to the
names and headings in the credits section on pages Credits v-vii. There are NO
technical changes between these versions; from a normative point of view, the
documents X3J13/94-101 and X3J13/94-101R are entirely interchangeable.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Figures
Chapter 1 (Introduction)
1-1. Notations for NIL 1-14
1-2. Deprecated Functions 1-33
1-3. Functions with Deprecated :TEST-NOT Arguments 1-33
1-4. Symbols in the COMMON-LISP package (part one of twelve). 1-35
1-5. Symbols in the COMMON-LISP package (part two of twelve). 1-36
1-6. Symbols in the COMMON-LISP package (part three of twelve). 1-37
1-7. Symbols in the COMMON-LISP package (part four of twelve). 1-38
1-8. Symbols in the COMMON-LISP package (part five of twelve). 1-39
1-9. Symbols in the COMMON-LISP package (part six of twelve). 1-40
1-10. Symbols in the COMMON-LISP package (part seven of twelve). 1-41
1-11. Symbols in the COMMON-LISP package (part eight of twelve). 1-42
1-12. Symbols in the COMMON-LISP package (part nine of twelve). 1-43
1-13. Symbols in the COMMON-LISP package (part ten of twelve). 1-44
1-14. Symbols in the COMMON-LISP package (part eleven of twelve).. 1-45
1-15. Symbols in the COMMON-LISP package (part twelve of twelve). 1-46
Chapter 2 (Syntax)
2-1. Readtable defined names 2-1
2-2. Variables that influence the Lisp reader. 2-2
2-3. Standard Character Subrepertoire (Part 1 of 3: Latin Characters) 2-3
2-4. Standard Character Subrepertoire (Part 2 of 3: Numeric Characters) 2-3
2-5. Standard Character Subrepertoire (Part 3 of 3: Special Characters) 2-4
2-6. Possible Character Syntax Types. 2-5
2-7. Character Syntax Types in Standard Syntax 2-5
2-8. Constituent Traits of Standard Characters and Semi-Standard Characters 2-7
2-9. Syntax for Numeric Tokens 2-14
2-10. Examples of reserved tokens 2-15
2-11. Examples of symbols 2-15
2-12. Examples of symbols or potential numbers L 2-16
2-13. Examples of Ratios 2-17
2-14. Examples of Floating-point numbers 2-18
2-15. Examples of the printed representation of symbols (Part 1 of 2) 2-19
2-16. Examples of the printed representation of symbols (Part 2 0f2) 2-20
2-17. Valid patterns for tokens 2-21
2-18. Examples of the use of double-quote 2-26

Figures i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

ii

2-19. Standard # Dispatching Macro Character Syntax 2-30
2-20. Radix Indicator Example 2-34
2-21. Complex Number Example 2-35
Chapter 3 (Evaluation and Compilation)

3—-1. Some Defined Names Applicable to Variables 34
3-2. Common Lisp Special Operators 3-6
3-3. Defined names applicable to macros 37
3—4. Some function-related defined names 3-8
3-5. Some operators applicable to receiving multiple values 3-13
3-6. Defined names applicable to compiler macros 3-16
3-7. EVAL-WHEN processing 3-21
3-8. Defining Macros That Affect the Compile-Time Environment 3-22
3-9. Common Lisp Declaration Identifiers 3-29
3-10. What Kind of Lambda Lists to Use 3-33
3-11. Defined names applicable to lambda lists 3-33
3-12. Standardized Operators that use Ordinary Lambda Lists 3-34
3-13. Lambda List Keywords used by Ordinary Lambda Lists 3-34
3-14. Lambda List Keywords used by Generic Function Lambda Lists 3-40
3-15. Standardized Operators that use Specialized Lambda Lists 3-40
3-16. Lambda List Keywords used by Specialized Lambda Lists 3-40
3-17. Operators that use Macro Lambda Lists. 3-41
3-18. Lambda List Keywords used by Macro Lambda Lists 3-42
3-19. Lambda List Keywords used by Defsetf Lambda Lists 3-47
3-20. Lambda List Keywords used by Define-modify-macro Lambda Lists. 3-48
3-21. Lambda List Keywords used by Define-method-combination arguments Lambda Lists 3-48
3-22. Global Declaration Specifiers 3-82
3-23. Standardized Forms In Which Declarations Can Occur 3-84
3-24. Local Declaration Specifiers 3-84
3-25. Optimize qualities 3-97
Chapter 4 (Types and Classes)

4-1. Cross-References to Data Type Information 4-2
4-2. Standardized Atomic Type Specifiers 4-4
4-3. Standardized Compound Type Specifier Names 4-5
4-4. Standardized Compound-Only Type Specifier Names 4-5
4-5. Defined names relating to types and declarations. 4-6
4-6. Standardized Type Specifier Names 4-7
4-7. Object System Classes 4-8
4-8. Classes that correspond to pre-defined type specifiers 4-18
4-9. Result possibilities for subtypep 4-35

Chapter 5 (Data and Control Flow)

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5-1. Examples of setf 5-1
5-2. Operators relating to places and generalized reference. 5-1
5-3. Sample Setf Expansion of a Variable 5-4
5-4. Sample Setf Expansion of a CAR Form 5-4
5-5. Sample Setf Expansion of a SUBSEQ Form 54
5-6. Sample Setf Expansion of a LDB Form 5-5
5-7. Functions that setf can be used with—1. 5-6
5-8. Functions that setf can be used with—2 57
5-9. Read-Modify-Write Macros 5-12
5-10. Macros that have implicit tagbodies. 5-49
5-11. Operators that always prefer EQ over EQL 5-57
5-12. Summary and priorities of behavior of equal 5-61
5-13. Summary and priorities of behavior of equalp 5-63

Chapter 6 (Iteration)

Chapter 7 (Objects)
7-1. Standardized Method-Defining Operators 7-18
7-2. Built-in Method Combination Types 726

Chapter 8 (Structures)

Chapter 9 (Conditions)

9-1. Standardized Condition Types. 9-2
9-2. Operators that define and create conditions. 9-2
9-3. Operators that read condition slots. 9-3
9—4. Operators relating to handling conditions. 9-7
9-5. Defined names relating to signaling conditions. 9-7
9-6. Defined names relating to restarts. 9-9
9-7. Operators relating to assertions. 9-10

Chapter 10 (Symbols)
10-1. Property list defined names 10-1
10-2. Symbol creation and inquiry defined names 10-1

Chapter 11 (Packages)
11-1. Some Defined Names related to Packages 11-1
11-2. Standardized Package Names 11-4

Chapter 12 (Numbers)
12-1. Operators relating to Arithmetic.. 12-1

Figures iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

12-2. Defined names relating to Exponentials, Logarithms, and Trigonometry. 12-1
12-3. Operators for numeric comparison and predication.. 12-1
12—4. Defined names relating to numeric type manipulation and coercion. 12-2
12-5. Defined names relating to logical operations on numbers. 12-3
12-6. Defined names relating to byte manipulation. 124
12-7. Defined names relating to implementation-dependent details about numbers. 124
12-8. Functions Affected by Rule of Float Substitutability 12-6
12-9. Trigonometric Identities for Complex Domain 12-9
12-10. Quadrant Numbering for Branch Cuts 12-9
12-11. Random-state defined names 12-10
12-12. Recommended Minimum Floating-Point Precision and Exponent Size 12-14
12-13. Uses of /=, =, <, >, <=, and >=. 12-22
12-14. Mathematical definition of arc sine, arc cosine, and arc tangent 12-29
12-15. Quadrant information for arc tangent 12-31
12-16. Mathematical definitions for hyperbolic functions 12-33
12-17. Bit-Wise Logical Operations 12-68
12-18. Bit-wise Logical Operations on Integers 12-72
Chapter 13 (Characters)

13-1. Character defined names — 1 13-1
13-2. Character defined names — 2 13-1
Chapter 14 (Conses)

14-1. Some defined names relating to conses. 14-1
14-2. Some defined names relating to trees. 14-1
14-3. Some defined names relating to lists. 14-2
14-4. Some defined names related to assocation lists. 14-2
14-5. Some defined names related tosets.o 14-3
14-6. CAR and CDR variants 14-11
Chapter 15 (Arrays)

15-1. General Purpose Array-Related Defined Names 15-2
15-2. Operators that Manipulate Strings 15-3
15-3. Operators that Manipulate Bit Arrays 154
15—4. Bit-wise Logical Operations on Bit Arrays 15-38
Chapter 16 (Strings)

Chapter 17 (Sequences)

17-1. Standardized Sequence Functions 17-1
17-2. Operators that have Two-Argument Tests to be Satisfied 17-2
17-3. Operators that have One-Argument Tests to be Satisfied 17-3

iv Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Chapter 18 (Hash Tables)
18-1. Hash-table defined names 18-1

Chapter 19 (Filenames)

19-1. Pathname Operations 19-2
19-2. Pathname functions using a :CASE argument 19-4
19-3. Special Markers In Directory Component 19-8

Chapter 20 (Files)

20-1. File and Directory Operations 20-1
20-2. File Functions that Treat Open and Closed Streams Differently 20-1
20-3. File Functions where Closed Streams Might Work Best 202

Chapter 21 (Streams)

21-1. Some General-Purpose Stream Operations 21-1
21-2. Operators relating to Input Streams. 21-1
21-3. Operators relating to Output Streams. 21-2
21-4. Operators relating to Bidirectional Streams. 21-2
21-5. Defined Names related to Specialized Streams 214
21-6. Standardized Stream Variables 214
21-7. Operators that accept either Open or Closed Streams 21-5
21-8. Operators that accept Open Streams only 21-5

Chapter 22 (Printer)

22-1. Standardized Printer Control Variables 22-1
22-2. Additional Influences on the Lisp printer. 22-2
22-3. Example of Logical Blocks, Conditional Newlines, and Sections 22-15
22-4. Defined names related to pretty printing. 22-15
22-5. Format directives related to Pretty Printing 22-15
22—6. Examples of format control strings 22-23
22-7. Argument correspondences for the WRITE function. 22-63

Chapter 23 (Reader)
23-1. Values of standard control variables 23-18

Chapter 24 (System Construction)
24-1. Features examples 24-2

Chapter 25 (Environment)
25—1. Variables maintained by the Read-Eval-Print Loop 251
25-2. Defined names relating to debugging L 25-1

Figures v

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

vi

25-3. Defined names relating to environment inquiry.. L. 25-2
25—4. Defined names involving Time. 252
25-5. Defined names involving time in Decoded Time. 25-3
25-6. Defined names involving time in Universal Time. 254
25—7. Defined names involving time in Internal Time. 254
25-8. Defined names involving time in Seconds. 254

Chapter 26 (Glossary)

26-1. Exponent Markers 26-22
26-2. Standardized I/O Customization Variables 26-30
26—3. Standardized Iteration Forms 2633
26—4. Standardized Restart Functions 26-49

Chapter A (Appendix)

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Contents
Chapter 1 (Introduction)
1.1 Scope, Purpose, and History 1-1
1.1.1 Scope and Purpose 1-1
112 History ..o 1-1
1.2 Organization of the Document 1-4
1.3 Referenced Publications 1-5
1.4 Definitions 1-7
1.4.1 Notational Conventions 1-7
1.4.1.1 Font Key 1-7
1.4.1.2 Modified BNF Syntax 1-7
1.4.1.2.1 Splicing in Modified BNF Syntax 1-8
1.4.1.2.2 Indirection in Modified BNF Syntax 1-9
1.4.1.2.3 Additional Uses for Indirect Definitions in Modified BNF Syntax 1-10
1.4.1.3 Special Symbols 1-10
1.4.1.4 Objects with Multiple Notations 1-12
1.4.1.4.1 Case in Symbols 1-12
1.4.1.4.2 Numbers 1-13
1.4.1.4.3 Use of the Dot Character 1-13
TATA4ANIL 1-13
1.4.1.5 Designators 1-14
1.4.1.6 Nonsense Words 1-15
1.4.2 Error Terminology 1-15
1.4.3 Sections Not Formally Part Of This Standard 1-18
1.4.4 Interpreting Dictionary Entries 1-19
1.4.4.1 The “Affected By” Section of a Dictionary Entry 1-19
1.4.4.2 The “Arguments” Section of a Dictionary Entry 1-19
1.4.4.3 The “Arguments and Values” Section of a Dictionary Entry 1-19
1.4.4.4 The “Binding Types Affected” Section of a Dictionary Entry 1-19
1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry 1-19
1.4.4.6 Dictionary Entries for Type Specifiers 1-20
1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry 1-20
1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry 1-20
1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry 1-21
1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry 1-21
1.4.4.7 The “Constant Value” Section of a Dictionary Entry 1-21
1.4.4.8 The “Description” Section of a Dictionary Entry 1-21
1.4.4.9 The “Examples” Section of a Dictionary Entry 1-21

Contents i

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry 1-21
1.4.4.11 The “Initial Value” Section of a Dictionary Entry 1-21
1.4.4.12 The “Argument Precedence Order” Section of a Dictionary Entry 1-22
1.4.4.13 The “Method Signature” Section of a Dictionary Entry 1-22
1.4.4.14 The “Name” Section of a Dictionary Entry 1-22
1.4.4.15 The “Notes” Section of a Dictionary Entry 1-24
1.4.4.16 The “Pronunciation” Section of a Dictionary Entry 1-24
1.4.4.17 The “See Also” Section of a Dictionary Entry 1-24
1.4.4.18 The “Side Effects” Section of a Dictionary Entry 1-24
1.4.4.19 The “Supertypes” Section of a Dictionary Entry 1-24
1.4.4.20 The “Syntax” Section of a Dictionary Entry 1-24
1.4.4.20.1 Special “Syntax” Notations for Overloaded Operators 1-25
1.4.4.20.2 Naming Conventions for Rest Parameters 1-25
1.4.4.20.3 Requiring Non-Null Rest Parameters in the “Syntax” Section 1-25
1.4.4.20.4 Return values in the “Syntax” Section 1-26
1.4.4.20.4.1 No Arguments or Values in the “Syntax” Section 1-26
1.4.4.20.4.2 Unconditional Transfer of Control in the “Syntax” Section 1-26
1.4.4.21 The “Valid Context” Section of a Dictionary Entry 1-26
1.4.4.22 The “Value Type” Section of a Dictionary Entry 1-26
1.5 Conformance 1-28
1.5.1 Conforming Implementations 1-28
1.5.1.1 Required Language Features 1-28
1.5.1.2 Documentation of Implementation-Dependent Features 1-28
1.5.1.3 Documentation of Extensions 1-28
1.5.1.4 Treatment of Exceptional Situations 1-28
1.5.1.4.1 Resolution of Apparent Conflicts in Exceptional Situations 1-28
1.5.1.4.1.1 Examples of Resolution of Apparent Conflicts in Exceptional Situations 1-28
1.5.1.5 Conformance Statement 1-29
1.5.2 Conforming Programs 1-29
1.5.2.1 Use of Implementation-Defined Language Features 1-29
1.5.2.1.1 Use of Read-Time Conditionals 1-30
1.5.2.2 Character Set for Portable Code 1-30
1.6 Language Extensions 1-31
1.7 Language Subsets 1-32
1.8 Deprecated Language Features 1-33
1.8.1 Deprecated Functions 1-33
1.8.2 Deprecated Argument Conventions 1-33
1.8.3 Deprecated Variables 1-33
1.8.4 Deprecated Reader Syntax 1-34
1.9 Symbols in the COMMON-LISP Package 1-35

Chapter 2 (Syntax)

2.1 Character Syntax 2-1
2.1.1 Readtables 2-1
2.1.1.1 The Current Readtable 2-1

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.1.2 The Standard Readtable 2-1
2.1.1.3 The Initial Readtable 2-1
2.1.2 Variables that affect the Lisp Reader 2-2
2.1.3 Standard Characters 2-2
2.1.4 Character Syntax Types 2-4
2.1.4.1 Constituent Characters 2-6
2.1.4.2 Constituent Traits 2-6
2.1.4.3 Invalid Characters 2-8
2.1.4.4 Macro Characters 2-8
2.1.4.5 Multiple Escape Characters 2-8
2.1.4.5.1 Examples of Multiple Escape Characters 2-9
2.1.4.6 Single Escape Character 2-9
2.1.4.6.1 Examples of Single Escape Characters 2-9
2.1.4.7 Whitespace Characters 2-9
2.1.4.7.1 Examples of Whitespace Characters 2-9
2.2 Reader Algorithm 2-11
2.3 Interpretation of Tokens 2-14
2.3.1 Numbers as Tokens 2-14
2.3.1.1 Potential Numbers as Tokens 2-14
2.3.1.1.1 Escape Characters and Potential Numbers 2-15
2.3.1.1.2 Examples of Potential Numbers 2-15
2.3.2 Constructing Numbers from Tokens 2-16
2.3.2.1 Syntax of a Rational 2-16
2.3.2.1.1 Syntax of an Integer 2-16
2.3.2.1.2 Syntax of a Ratio 2-16
2.3.2.2 Syntax of a Float 2-17
2.3.2.3 Syntax of a Complex 2-18
2.3.3 The Consing Dot 2-18
2.3.4 Symbols as Tokens 2-18
2.3.5 Valid Patterns for Tokens 2-20
2.3.6 Package System Consistency Rules 2-22
2.4 Standard Macro Characters 2-23
2.4.1 Left-Parenthesis 2-23
2.4.2 Right-Parenthesis 2-23
2.4.3 Single-Quote 2-23
2.4.3.1 Examples of Single-Quote 2-24
2.4.4 Semicolon 2-24
2.4.4.1 Examples of Semicolon 2-24
2.4.4.2 Notes about Style for Semicolon 2-24
2.4.4.2.1 Use of Single Semicolon 2-24
2.4.4.2.2 Use of Double Semicolon 2-24
2.4.4.2.3 Use of Triple Semicolon 2-25
2.4.4.2.4 Use of Quadruple Semicolon 2-25
2.4.4.2.5 Examples of Style for Semicolon 2-25
2.4.5 Double-Quote 2-25

Contents 1iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.6 Backquote 2-26
2.4.6.1 Notes about Backquote 2-28
2.4.7 Comma 2-28
2.4.8 Sharpsign 2-28
2.4.8.1 Sharpsign Backslash 2-31
2.4.8.2 Sharpsign Single-Quote 2-31
2.4.8.3 Sharpsign Left-Parenthesis 2-31
2.4.8.4 Sharpsign Asterisk 2-32
2.4.8.4.1 Examples of Sharpsign Asterisk 2-32
2.4.8.5 Sharpsign Colon 2-33
2.4.8.6 Sharpsign Dot 2-33
2.4.8.7 Sharpsign B . . . 2-33
2.4.8.8 Sharpsign O . . . 2-33
2.4.8.9 Sharpsign X 2-33
2.4.8.10 Sharpsign R 2-34
2.4.8.11 Sharpsign C 2-34
2.4.8.12 Sharpsign A . . 2-35
2.4.8.13 Sharpsign S 2-35
2.4.8.14 Sharpsign P . 2-36
2.4.8.15 Sharpsign Equal-Sign 2-36
2.4.8.16 Sharpsign Sharpsign 2-36
2.4.8.17 Sharpsign Plus 2-37
2.4.8.18 Sharpsign Minus 2-37
2.4.8.19 Sharpsign Vertical-Bar 2-37
2.4.8.19.1 Examples of Sharpsign Vertical-Bar 2-38
2.4.8.19.2 Notes about Style for Sharpsign Vertical-Bar 2-39
2.4.8.20 Sharpsign Less-Than-Sign 2-39
2.4.8.21 Sharpsign Whitespace 2-39
2.4.8.22 Sharpsign Right-Parenthesis 2-39
2.4.9 Re-Reading Abbreviated Expressions 2-40

Chapter 3 (Evaluation and Compilation)

3.1 Evaluation . . . 3-1
3.1.1 Introduction to Environments 3-1
3.1.1.1 The Global Environment 3-1
3.1.1.2 Dynamic Environments 3-1
3.1.1.3 Lexical Environments 3-2
3.1.1.3.1 The Null Lexical Environment 3-2
3.1.1.4 Environment Objects 3-3
3.1.2 The Evaluation Model 3-3
3.1.2.1 Form Evaluation 3-3
3.1.2.1.1 Symbols as Forms 3-3
3.1.2.1.1.1 Lexical Variables 34
3.1.2.1.1.2 Dynamic Variables 34
3.1.2.1.1.3 Constant Variables 3-5

iv Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.1.4 Symbols Naming Both Lexical and Dynamic Variables 3-5
3.1.2.1.2 Conses as Forms 3-5
3.1.2.1.2.1 Special Forms 3-6
3.1.2.1.2.2 Macro Forms 3-6
3.1.2.1.2.3 Function Forms 37
3.1.2.1.2.4 Lambda Forms 3-8
3.1.2.1.3 Self-Evaluating Objects 3-8
3.1.2.1.3.1 Examples of Self-Evaluating Objects 39
3.1.3 Lambda Expressions 3-9
3.1.4 Closures and Lexical Binding 3-9
3.1.5 Shadowing 3-11
3.1.6 Extent 3-12
3.1.7 Return Values 3-13
3.2 Compilation .. . 3-14
3.2.1 Compiler Terminology 3-14
3.2.2 Compilation Semantics 3-15
3.2.2.1 Compiler Macros 3-15
3.2.2.1.1 Purpose of Compiler Macros 3-16
3.2.2.1.2 Naming of Compiler Macros 3-16
3.2.2.1.3 When Compiler Macros Are Used 3-17
3.2.2.1.3.1 Notes about the Implementation of Compiler Macros 3-17
3.2.2.2 Minimal Compilation 3-17
3.2.2.3 Semantic Constraints 3-18
3.2.3 File Compilation 3-19
3.2.3.1 Processing of Top Level Forms 3-20
3.2.3.1.1 Processing of Defining Macros 3-22
3.2.3.1.2 Constraints on Macros and Compiler Macros 3-22
3.2.4 Literal Objects in Compiled Files 3-23
3.2.4.1 Externalizable Objects 3-23
3.2.4.2 Similarity of Literal Objects 3-24
3.2.4.2.1 Similarity of Aggregate Objects 3-24
3.2.4.2.2 Definition of Similarity 3-24
3.2.4.3 Extensions to Similarity Rules 3-26
3.2.4.4 Additional Constraints on Externalizable Objects 3-26
3.2.5 Exceptional Situations in the Compiler 3-28
3.3 Declarations 3-29
3.3.1 Minimal Declaration Processing Requirements 3-29
3.3.2 Declaration Specifiers 3-29
3.3.3 Declaration Identifiers 3-29
3.3.3.1 Shorthand notation for Type Declarations 3-30
3.3.4 Declaration Scope 3-30
3.3.4.1 Examples of Declaration Scope 3-30
3.4 Lambda Lists 3-33
3.4.1 Ordinary Lambda Lists 3-33
3.4.1.1 Specifiers for the required parameters 3-34

Contents v

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.2 Specifiers for optional parameters 3-35
3.4.1.3 A specifier for a rest parameter 3-35
3.4.1.4 Specifiers for keyword parameters 3-35
3.4.1.4.1 Suppressing Keyword Argument Checking, 3-36
3.4.1.4.1.1 Examples of Suppressing Keyword Argument Checking 3-37
3.4.1.5 Specifiers for &aux variables 3-37
3.4.1.6 Examples of Ordinary Lambda Lists 3-37
3.4.2 Generic Function Lambda Lists 3-39
3.4.3 Specialized Lambda Lists 3-40
3.4.4 Macro Lambda Lists 3-41
3.4.4.1 Destructuring by Lambda Lists 343
3.4.4.1.1 Data-directed Destructuring by Lambda Lists 3-43
3.4.4.1.1.1 Examples of Data-directed Destructuring by Lambda Lists 3-43
3.4.4.1.2 Lambda-list-directed Destructuring by Lambda Lists 3-43
3.4.5 Destructuring Lambda Lists 3-45
3.4.6 Boa Lambda Lists 3-45
3.4.7 Defsetf Lambda Lists 3-47
3.4.8 Deftype Lambda Lists 3-47
3.4.9 Define-modify-macro Lambda Lists 3-48
3.4.10 Define-method-combination Arguments Lambda Lists 3-48
3.4.11 Syntactic Interaction of Documentation Strings and Declarations 3-48
3.5 Error Checking in Function Calls 3-50
3.5.1 Argument Mismatch Detection 3-50
3.5.1.1 Safe and Unsafe Calls 3-50
3.5.1.1.1 Error Detection Time in Safe Calls 3-51
3.5.1.2 Too Few Arguments 3-51
3.5.1.3 Too Many Arguments 3-51
3.5.1.4 Unrecognized Keyword Arguments 3-51
3.5.1.5 Invalid Keyword Arguments 3-51
3.5.1.6 Odd Number of Keyword Arguments 3-52
3.5.1.7 Destructuring Mismatch 3-52
3.5.1.8 Errors When Calling a Next Method 3-52
3.6 Traversal Rules and Side Effects 3-53
3.7 Destructive Operations 3-54
3.7.1 Modification of Literal Objects 3-54
3.7.2 Transfer of Control during a Destructive Operation 3-55
3.7.2.1 Examples of Transfer of Control during a Destructive Operation 3-55
3.8 Evaluation and Compilation Dictionary 3-56

Chapter 4 (Types and Classes)

4.1 Introduction 4-1
A2 TYPeS .« 4-2
4.2.1 Data Type Definition 4-2
4.2.2 Type Relationships 4-2
4.2.3 Type Specifiers 4-3

vi Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3 ClasSes 4-8
4.3.1 Introduction to Classes 4-8
4.3.1.1 Standard Metaclasses 4-9
4.3.2 Defining Classes 4-9
4.3.3 Creating Instances of Classes 4-10
4.3.4 Inheritance 4-11
4.3.4.1 Examples of Inheritance 4-11
4.3.4.2 Inheritance of Class Options 4-11
4.3.5 Determining the Class Precedence List 4-11
4.3.5.1 Topological Sorting 4-12
4.3.5.2 Examples of Class Precedence List Determination 4-13
4.3.6 Redefining Classes 4-14
4.3.6.1 Modifying the Structure of Instances 4-15
4.3.6.2 Initializing Newly Added Local Slots 4-15
4.3.6.3 Customizing Class Redefinition 4-16
4.3.7 Integrating Types and Classes 4-16
4.4 Types and Classes Dictionary 4-19

Chapter 5 (Data and Control Flow)

5.1 Generalized Reference 5-1
5.1.1 Overview of Places and Generalized Reference 5-1
5.1.1.1 Evaluation of Subforms to Places 5-1
5.1.1.1.1 Examples of Evaluation of Subforms to Places 5-2
5.1.1.2 Setf Expansions 5-3
5.1.1.2.1 Examples of Setf Expansions 54
5.1.2 Kinds of Places 5-5
5.1.2.1 Variable Names as Places 5-5
5.1.2.2 Function Call Forms as Places 5-5
5.1.2.3 VALUES Forms as Places 59
5.1.2.4 THE Forms as Places 5-9
5.1.2.5 APPLY Forms as Places 59
5.1.2.6 Setf Expansions and Places 5-10
5.1.2.7 Macro Forms as Places 5-10
5.1.2.8 Symbol Macros as Places 5-10
5.1.2.9 Other Compound Forms as Places 5-10
5.1.3 Treatment of Other Macros Based on SETFEF 5-11
5.2 Transfer of Control to an Exit Point 5-13
5.3 Data and Control Flow Dictionary 5—-14

Chapter 6 (Tteration)

6.1 The LOOP Facility 6-1
6.1.1 Overview of the Loop Facility 6-1
6.1.1.1 Simple vs Extended Loop 6-1
6.1.1.1.1 Simple Loop 6-1

Contents vii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.1.2 Extended Loop 6-1
6.1.1.2 Loop Keywords 6-1
6.1.1.3 Parsing Loop Clauses 6-1
6.1.1.4 Expanding Loop Forms 6-2
6.1.1.5 Summary of Loop Clauses 6-3
6.1.1.5.1 Summary of Variable Initialization and Stepping Clauses 6-3
6.1.1.5.2 Summary of Value Accumulation Clauses 6-3
6.1.1.5.3 Summary of Termination Test Clauses 64
6.1.1.5.4 Summary of Unconditional Execution Clauses 64
6.1.1.5.5 Summary of Conditional Execution Clauses 6-5
6.1.1.5.6 Summary of Miscellaneous Clauses 6-5
6.1.1.6 Order of Execution 6-5
6.1.1.7 Destructuring 6-6
6.1.1.8 Restrictions on Side-Effects 6-8
6.1.2 Variable Initialization and Stepping Clauses 6-8
6.1.2.1 Tteration Control 6-8
6.1.2.1.1 The for-as-arithmetic subclause 6-9
6.1.2.1.1.1 Examples of for-as-arithmetic subclause 6-10
6.1.2.1.2 The for-as-in-list subclause 6-11
6.1.2.1.2.1 Examples of for-as-in-list subclause 6-11
6.1.2.1.3 The for-as-on-list subclause 6-12
6.1.2.1.3.1 Examples of for-as-on-list subclause 6-12
6.1.2.1.4 The for-as-equals-then subclause 6-12
6.1.2.1.4.1 Examples of for-as-equals-then subclause 6-12
6.1.2.1.5 The for-as-across subclause 6-12
6.1.2.1.5.1 Examples of for-as-across subclause 6-13
6.1.2.1.6 The for-as-hash subclause 6-13
6.1.2.1.7 The for-as-package subclause 6-14
6.1.2.1.7.1 Examples of for-as-package subclause 6-15
6.1.2.2 Local Variable Initializations 6-15
6.1.2.2.1 Examples of WITH clause 6-16
6.1.3 Value Accumulation Clauses 6-17
6.1.3.1 Examples of COLLECT clause 6-19
6.1.3.2 Examples of APPEND and NCONC clauses 6-19
6.1.3.3 Examples of COUNT clause 6-20
6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses 6-20
6.1.3.5 Examples of SUM clause 6-20
6.1.4 Termination Test Clauses 621
6.1.4.1 Examples of REPEAT clause 6-22
6.1.4.2 Examples of ALWAYS, NEVER, and THEREIS clauses 6-22
6.1.4.3 Examples of WHILE and UNTIL clauses 6-24
6.1.5 Unconditional Execution Clauses 6-24
6.1.5.1 Examples of unconditional execution 6-24
6.1.6 Conditional Execution Clauses 6-25
6.1.6.1 Examples of WHEN clause 6-25

viii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.7 Miscellaneous Clauses 6-26
6.1.7.1 Control Transfer Clauses 6-27
6.1.7.1.1 Examples of NAMED clause 6-27
6.1.7.2 Initial and Final Execution 6-27
6.1.8 Examples of Miscellaneous Loop Features 627
6.1.8.1 Examples of clause grouping 6-28
6.1.9 Notes about Loop 6-30
6.2 Iteration Dictionary 6-31

Chapter 7 (Objects)

7.1 Object Creation and Initialization 71
7.1.1 Initialization Arguments 72
7.1.2 Declaring the Validity of Initialization Arguments 72
7.1.3 Defaulting of Initialization Arguments 73
7.1.4 Rules for Initialization Arguments 74
7.1.5 Shared-Initialize -5
7.1.6 Initialize-Instance 76
7.1.7 Definitions of Make-Instance and Initialize-Instance 7
7.2 Changing the Class of an Instance 79
7.2.1 Modifying the Structure of the Instance 79
7.2.2 Initializing Newly Added Local Slots 79
7.2.3 Customizing the Change of Class of an Instance 7-10
7.3 Reinitializing an Instance 7-11
7.3.1 Customizing Reinitialization 711
7.4 Meta-Objects 7-12
7.4.1 Standard Meta-objects 712
T.5 SIotS o 7-13
7.5.1 Introduction to Slots 7-13
7.5.2 Accessing Slots 7-13
7.5.3 Inheritance of Slots and Slot Options 7-14
7.6 Generic Functions and Methods 717
7.6.1 Introduction to Generic Functions 17
7.6.2 Introduction to Methods 7-18
7.6.3 Agreement on Parameter Specializers and Qualifiers 7-20
7.6.4 Congruent Lambda-lists for all Methods of a Generic Function 720
7.6.5 Keyword Arguments in Generic Functions and Methods 721
7.6.5.1 Examples of Keyword Arguments in Generic Functions and Methods 7-21
7.6.6 Method Selection and Combination 722
7.6.6.1 Determining the Effective Method 722
7.6.6.1.1 Selecting the Applicable Methods 722
7.6.6.1.2 Sorting the Applicable Methods by Precedence Order 723
7.6.6.1.3 Applying method combination to the sorted list of applicable methods 723
7.6.6.2 Standard Method Combination 724
7.6.6.3 Declarative Method Combination 7-25
7.6.6.4 Built-in Method Combination Types 7-26

Contents ix

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

7.6.7 Inheritance of Methods 727
7.7 Objects Dictionary 728

Chapter 8 (Structures)
8.1 Structures Dictionary 8-1

Chapter 9 (Conditions)

9.1 Condition System Concepts 9-1
9.1.1 Condition Types 9-2
9.1.1.1 Serious Conditions 9-3
9.1.2 Creating Conditions 9-3
9.1.2.1 Condition Designators 9-3
9.1.3 Printing Conditions 9-4
9.1.3.1 Recommended Style in Condition Reporting 9-4
9.1.3.1.1 Capitalization and Punctuation in Condition Reports 9-5
9.1.3.1.2 Leading and Trailing Newlines in Condition Reports 9-5
9.1.3.1.3 Embedded Newlines in Condition Reports 9-5
9.1.3.1.4 Note about Tabs in Condition Reports 9-6
9.1.3.1.5 Mentioning Containing Function in Condition Reports 9-6
9.1.4 Signaling and Handling Conditions 9-6
9.1.4.1 Signaling 9-7
9.1.4.1.1 Resignaling a Condition 9-8
9.1.4.2 Restarts 9-8
9.1.4.2.1 Interactive Use of Restarts 9-9
9.1.4.2.2 Interfaces to Restarts 9-9
9.1.4.2.3 Restart Tests 9-9
9.1.4.2.4 Associating a Restart with a Condition 9-9
0.1.5 Assertions 9-10
9.1.6 Notes about the Condition System’s Background 9-10
9.2 Conditions Dictionary 9-11

Chapter 10 (Symbols)
10.1 Symbol Concepts 10-1
10.2 Symbols Dictionary 10-2

Chapter 11 (Packages)

11.1 Package Concepts 11-1
11.1.1 Introduction to Packages 11-1
11.1.1.1 Package Names and Nicknames 11-1
11.1.1.2 Symbols in a Package 11-1
11.1.1.2.1 Internal and External Symbols 11-1
11.1.1.2.2 Package Inheritance 11-2
11.1.1.2.3 Accessibility of Symbols in a Package 11-2

x Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

11.1.1.2.4 Locating a Symbol in a Package 11-3
11.1.1.2.5 Prevention of Name Conflicts in Packages 11-3
11.1.2 Standardized Packages 114
11.1.2.1 The COMMON-LISP Package 114
11.1.2.1.1 Constraints on the COMMON-LISP Package for Conforming Implementations 11-5
11.1.2.1.2 Constraints on the COMMON-LISP Package for Conforming Programs 11-5
11.1.2.1.2.1 Some Exceptions to Constraints on the COMMON-LISP Package for Conforming

Programs . .. 11-6
11.1.2.2 The COMMON-LISP-USER Package 11-6
11.1.2.3 The KEYWORD Package 11-7
11.1.2.3.1 Interning a Symbol in the KEYWORD Package 11-7
11.1.2.3.2 Notes about The KEYWORD Package 11-7
11.1.2.4 Implementation-Defined Packages 11-7
11.2 Packages Dictionary 11-8

Chapter 12 (Numbers)

12.1 Number Concepts 12-1
12.1.1 Numeric Operations 12-1
12.1.1.1 Associativity and Commutativity in Numeric Operations 12-2
12.1.1.1.1 Examples of Associativity and Commutativity in Numeric Operations 12-2
12.1.1.2 Contagion in Numeric Operations 12-3
12.1.1.3 Viewing Integers as Bits and Bytes 12-3
12.1.1.3.1 Logical Operations on Integers 12-3
12.1.1.3.2 Byte Operations on Integers 12-3
12.1.2 Implementation-Dependent Numeric Constants 12-4
12.1.3 Rational Computations 124
12.1.3.1 Rule of Unbounded Rational Precision 12-4
12.1.3.2 Rule of Canonical Representation for Rationals 12-5
12.1.3.3 Rule of Float Substitutability 12-5
12.1.4 Floating-point Computations 12-6
12.1.4.1 Rule of Float and Rational Contagion 12-6
12.1.4.1.1 Examples of Rule of Float and Rational Contagion 12-6
12.1.4.2 Rule of Float Approximation 12-7
12.1.4.3 Rule of Float Underflow and Overflow 12-7
12.1.4.4 Rule of Float Precision Contagion 12-7
12.1.5 Complex Computations 12-7
12.1.5.1 Rule of Complex Substitutability 12-8
12.1.5.2 Rule of Complex Contagion 12-8
12.1.5.3 Rule of Canonical Representation for Complex Rationals 12-8
12.1.5.3.1 Examples of Rule of Canonical Representation for Complex Rationals 12-8
12.1.5.4 Principal Values and Branch Cuts 12-8
12.1.6 Interval Designators 12-9
12.1.7 Random-State Operations 12-10
12.2 Numbers Dictionary 12-11

Contents xi

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Chapter 13 (Characters)

13.1 Character Concepts 13-1
13.1.1 Introduction to Characters 13-1
13.1.2 Introduction to Scripts and Repertoires 13-1
13.1.2.1 Character Scripts 13-1
13.1.2.2 Character Repertoires 132
13.1.3 Character Attributes 13-2
13.1.4 Character Categories 13-2
13.1.4.1 Graphic Characters 13-3
13.1.4.2 Alphabetic Characters 13-3
13.1.4.3 Characters With Case 13-3
13.1.4.3.1 Uppercase Characters 13-3
13.1.4.3.2 Lowercase Characters 13-4
13.1.4.3.3 Corresponding Characters in the Other Case 13-4
13.1.4.3.4 Case of Implementation-Defined Characters 13-4
13.1.4.4 Numeric Characters 13-4
13.1.4.5 Alphanumeric Characters 13-4
13.1.4.6 Digits in a Radix 13-4
13.1.5 Identity of Characters 13-5
13.1.6 Ordering of Characters 13-5
13.1.7 Character Names 13-5
13.1.8 Treatment of Newline during Input and Output 13-6
13.1.9 Character Encodings 13-7
13.1.10 Documentation of Implementation-Defined Scripts 13-7
13.2 Characters Dictionary 13-8
Chapter 14 (Conses)

14.1 Cons Concepts 14-1
14.1.1 Conses as Trees 14-1
14.1.1.1 General Restrictions on Parameters that must be Trees 14-1
14.1.2 Conses as Lists 14-1
14.1.2.1 Lists as Association Lists 14-2
14.1.2.2 Lists as Sets 14-2
14.1.2.3 General Restrictions on Parameters that must be Lists 14-3
14.2 Conses Dictionary 144
Chapter 15 (Arrays)

15.1 Array Concepts 15-1
15.1.1 Array Elements 15-1
15.1.1.1 Array Indices 15-1
15.1.1.2 Array Dimensions 15-1
15.1.1.2.1 Implementation Limits on Individual Array Dimensions 15-1
15.1.1.3 Array Rank . . 15-1
15.1.1.3.1 Vectors 15-1

xii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

15.1.1.3.1.1 Fill Pointers 15-1
15.1.1.3.2 Multidimensional Arrays 152
15.1.1.3.2.1 Storage Layout for Multidimensional Arrays 15-2
15.1.1.3.2.2 Implementation Limits on Array Rank 15-2
15.1.2 Specialized Arrays 15-2
15.1.2.1 Array Upgrading 15-3
15.1.2.2 Required Kinds of Specialized Arrays 15-3
15.2 Arrays Dictionary 15-5

Chapter 16 (Strings)

16.1 String Concepts 16-1
16.1.1 Implications of Strings Being Arrays 16-1
16.1.2 Subtypes of STRING 16-1
16.2 Strings Dictionary 16-2

Chapter 17 (Sequences)

17.1 Sequence Concepts 17-1
17.1.1 General Restrictions on Parameters that must be Sequences 17-1
17.2 Rules about Test Functions 17-2
17.2.1 Satisfying a Two-Argument Test 17-2
17.2.1.1 Examples of Satisfying a Two-Argument Test 17-2
17.2.2 Satisfying a One-Argument Test 17-3
17.2.2.1 Examples of Satisfying a One-Argument Test 17-4
17.3 Sequences Dictionary 17-5
Chapter 18 (Hash Tables)

18.1 Hash Table Concepts 18-1
18.1.1 Hash-Table Operations 18-1
18.1.2 Modifying Hash Table Keys 18-1
18.1.2.1 Visible Modification of Objects with respect to EQ and EQL 18-2
18.1.2.2 Visible Modification of Objects with respect to EQUAL 18-2
18.1.2.2.1 Visible Modification of Conses with respect to EQUAL 18-2
18.1.2.2.2 Visible Modification of Bit Vectors and Strings with respect to EQUAL 18-2
18.1.2.3 Visible Modification of Objects with respect to EQUALP 18-2
18.1.2.3.1 Visible Modification of Structures with respect to EQUALP 18-2
18.1.2.3.2 Visible Modification of Arrays with respect to EQUALP 18-3
18.1.2.3.3 Visible Modification of Hash Tables with respect to EQUALP 18-3
18.1.2.4 Visible Modifications by Language Extensions 18-3
18.2 Hash Tables Dictionary 184
Chapter 19 (Filenames)

19.1 Overview of Filenames 19-1
19.1.1 Namestrings as Filenames 19-1

Contents xiii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.1.2 Pathnames as Filenames 19-1
19.1.3 Parsing Namestrings Into Pathnames 19-2
19.2 Pathnames 19-3
19.2.1 Pathname Components 19-3
19.2.1.1 The Pathname Host Component 19-3
19.2.1.2 The Pathname Device Component 19-3
19.2.1.3 The Pathname Directory Component, 19-3
19.2.1.4 The Pathname Name Component 19-3
19.2.1.5 The Pathname Type Component 19-3
19.2.1.6 The Pathname Version Component 19-3
19.2.2 Interpreting Pathname Component Values 19-3
19.2.2.1 Strings in Component Values 19-3
19.2.2.1.1 Special Characters in Pathname Components 19-4
19.2.2.1.2 Case in Pathname Components 19-4
19.2.2.1.2.1 Local Case in Pathname Components 19-4
19.2.2.1.2.2 Common Case in Pathname Components 19-4
19.2.2.2 Special Pathname Component Values 19-5
19.2.2.2.1 NIL as a Component Value 19-5
19.2.2.2.2 :WILD as a Component Value 19-5
19.2.2.2.3 :UNSPECIFIC as a Component Value 19-5
19.2.2.2.3.1 Relation between component values NIL and :UNSPECIFIC 19-6
19.2.2.3 Restrictions on Wildcard Pathnames 19-6
19.2.2.4 Restrictions on Examining Pathname Components 19-6
19.2.2.4.1 Restrictions on Examining a Pathname Host Component 19-7
19.2.2.4.2 Restrictions on Examining a Pathname Device Component 19-7
19.2.2.4.3 Restrictions on Examining a Pathname Directory Component 19-7
19.2.2.4.3.1 Directory Components in Non-Hierarchical File Systems 19-8
19.2.2.4.4 Restrictions on Examining a Pathname Name Component 19-9
19.2.2.4.5 Restrictions on Examining a Pathname Type Component 19-9
19.2.2.4.6 Restrictions on Examining a Pathname Version Component 19-9
19.2.2.4.7 Notes about the Pathname Version Component 19-9
19.2.2.5 Restrictions on Constructing Pathnames 19-9
19.2.3 Merging Pathnames 19-10
19.2.3.1 Examples of Merging Pathnames 19-10
19.3 Logical Pathnames 19-12
19.3.1 Syntax of Logical Pathname Namestrings 19-12
19.3.1.1 Additional Information about Parsing Logical Pathname Namestrings 19-12
19.3.1.1.1 The Host part of a Logical Pathname Namestring 19-13
19.3.1.1.2 The Device part of a Logical Pathname Namestring 19-13
19.3.1.1.3 The Directory part of a Logical Pathname Namestring 19-13
19.3.1.1.4 The Type part of a Logical Pathname Namestring 19-13
19.3.1.1.5 The Version part of a Logical Pathname Namestring 19-13
19.3.1.1.6 Wildcard Words in a Logical Pathname Namestring 19-13
19.3.1.1.7 Lowercase Letters in a Logical Pathname Namestring 19-13
19.3.1.1.8 Other Syntax in a Logical Pathname Namestring 19-13

xiv Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

19.3.2 Logical Pathname Components 19-14
19.3.2.1 Unspecific Components of a Logical Pathname 19-14
19.3.2.2 Null Strings as Components of a Logical Pathname 19-14
19.4 Filenames Dictionary 19-15

Chapter 20 (Files)

20.1 File System Concepts 20-1
20.1.1 Coercion of Streams to Pathnames 20-1
20.1.2 File Operations on Open and Closed Streams 20-1
20.1.3 Truenames 20-2
20.1.3.1 Examples of Truenames 20-2
20.2 Files Dictionary 20-3

Chapter 21 (Streams)

21.1 Stream Concepts 21-1
21.1.1 Introduction to Streams 21-1
21.1.1.1 Abstract Classifications of Streams 21-1
21.1.1.1.1 Input, Output, and Bidirectional Streams 21-1
21.1.1.1.2 Open and Closed Streams 21-2
21.1.1.1.3 Interactive Streams 21-2
21.1.1.2 Abstract Classifications of Streams 21-3
21.1.1.2.1 File Streams 21-3
21.1.1.3 Other Subclasses of Stream 21-3
21.1.2 Stream Variables 21-4
21.1.3 Stream Arguments to Standardized Functions 21-5
21.1.4 Restrictions on Composite Streams 21-6
21.2 Streams Dictionary 21-7

Chapter 22 (Printer)

22.1 The Lisp Printer 22-1
22.1.1 Overview of The Lisp Printer 22-1
22.1.1.1 Multiple Possible Textual Representations 22-1
22.1.1.1.1 Printer Escaping 22-2
22.1.2 Printer Dispatching 22-2
22.1.3 Default Print-Object Methods 22-2
22.1.3.1 Printing Numbers 22-2
22.1.3.1.1 Printing Integers 22-2
22.1.3.1.2 Printing Ratios 22-3
22.1.3.1.3 Printing Floats 22-3
22.1.3.1.4 Printing Complexes 22-3
22.1.3.1.5 Note about Printing Numbers 224
22.1.3.2 Printing Characters 224
22.1.3.3 Printing Symbols 224

Contents xv

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.1.3.3.1 Package Prefixes for Symbols 22-5
22.1.3.3.2 Effect of Readtable Case on the Lisp Printer 22-5
22.1.3.3.2.1 Examples of Effect of Readtable Case on the Lisp Printer 22-6
22.1.3.4 Printing Strings 22-8
22.1.3.5 Printing Lists and Conses 22-8
22.1.3.6 Printing Bit Vectors 22-9
22.1.3.7 Printing Other Vectors 22-9
22.1.3.8 Printing Other Arrays 22-10
22.1.3.9 Examples of Printing Arrays 22-11
22.1.3.10 Printing Random States 22-11
22.1.3.11 Printing Pathnames 22-11
22.1.3.12 Printing Structures 22-11
22.1.3.13 Printing Other Objects 22-12
22.1.4 Examples of Printer Behavior 22-12
22.2 The Lisp Pretty Printer 22-14
22.2.1 Pretty Printer Concepts 22-14
22.2.1.1 Dynamic Control of the Arrangement of Output 22-14
22.2.1.2 Format Directive Interface 22-15
22.2.1.3 Compiling Format Strings 22-16
22.2.1.4 Pretty Print Dispatch Tables 22-16
22.2.1.5 Pretty Printer Margins 22-16
22.2.2 Examples of using the Pretty Printer 22-16
22.2.3 Notes about the Pretty Printer’s Background 22-22
22.3 Formatted Output 22-23
22.3.1 FORMAT Basic Output 22-24
22.3.1.1 Tilde C: Character 22-24
22.3.1.2 Tilde Percent: Newline 22-25
22.3.1.3 Tilde Ampersand: Fresh-Line 22-25
22.3.1.4 Tilde Vertical-Bar: Page 22-25
22.3.1.5 Tilde Tilde: Tilde 22-25
22.3.2 FORMAT Radix Control 22-25
22.3.2.1 Tilde R: Radix 22-25
22.3.2.2 Tilde D: Decimal 22-26
22.3.2.3 Tilde B: Binary 22-26
22.3.2.4 Tilde O: Octal 22-26
22.3.2.5 Tilde X: Hexadecimal 22-27
22.3.3 FORMAT Floating-Point Printers 22-27
22.3.3.1 Tilde F: Fixed-Format Floating-Point 22-27
22.3.3.2 Tilde E: Exponential Floating-Point 22-28
22.3.3.3 Tilde G: General Floating-Point 22-30
22.3.3.4 Tilde Dollarsign: Monetary Floating-Point 22-30
22.3.4 FORMAT Printer Operations 22-31
22.3.4.1 Tilde A: Aesthetic 22-31
22.3.4.2 Tilde S: Standard 22-31
22.3.4.3 Tilde W: Write 22-31

xvi Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

22.3.5 FORMAT Pretty Printer Operations 22-32
22.3.5.1 Tilde Underscore: Conditional Newline 22-32
22.3.5.2 Tilde Less-Than-Sign: Logical Block 22-32
22.3.5.3 Tilde I: Indent 22-33
22.3.5.4 Tilde Slash: Call Function 22-33
22.3.6 FORMAT Layout Control 22-34
22.3.6.1 Tilde T: Tabulate 22-34
22.3.6.2 Tilde Less-Than-Sign: Justification 22-34
22.3.6.3 Tilde Greater-Than-Sign: End of Justification 22-36
22.3.7 FORMAT Control-Flow Operations 22-36
22.3.7.1 Tilde Asterisk: Go-To 22-36
22.3.7.2 Tilde Left-Bracket: Conditional Expression 22-36
22.3.7.3 Tilde Right-Bracket: End of Conditional Expression 22-37
22.3.7.4 Tilde Left-Brace: Iteration 22-37
22.3.7.5 Tilde Right-Brace: End of Iteration 22-38
22.3.7.6 Tilde Question-Mark: Recursive Processing 22-39
22.3.8 FORMAT Miscellaneous Operations 22-39
22.3.8.1 Tilde Left-Paren: Case Conversion 22-39
22.3.8.2 Tilde Right-Paren: End of Case Conversion 22-40
22.3.8.3 Tilde P: Plural 22-40
22.3.9 FORMAT Miscellaneous Pseudo-Operations 22-40
22.3.9.1 Tilde Semicolon: Clause Separator 22-40
22.3.9.2 Tilde Circumflex: Escape Upward 22-40
22.3.9.3 Tilde Newline: Ignored Newline 22-42
22.3.10 Additional Information about FORMAT Operations 22-42
22.3.10.1 Nesting of FORMAT Operations 22-42
22.3.10.2 Missing and Additional FORMAT Arguments 22-43
22.3.10.3 Additional FORMAT Parameters 22-43
22.3.10.4 Undefined FORMAT Modifier Combinations 22-43
22.3.11 Examples of FORMAT 22-43
22.3.12 Notes about FORMAT . . . 22-45
22.4 Printer Dictionary 22-46

Chapter 23 (Reader)

23.1 Reader Concepts 23-1
23.1.1 Dynamic Control of the Lisp Reader 23-1
23.1.2 Effect of Readtable Case on the Lisp Reader 23-1
23.1.2.1 Examples of Effect of Readtable Case on the Lisp Reader 23-1
23.1.3 Argument Conventions of Some Reader Functions 23-2
23.1.3.1 The EOF-ERROR-P argument 23-2
23.1.3.2 The RECURSIVE-P argument 23-2
23.2 Reader Dictionary 234

Chapter 24 (System Construction)

Contents xvii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

24.1 System Construction Concepts 24-1
24.1.1 Loading 24-1
24.1.2 Features 24-1
24.1.2.1 Feature EXpressions 24-1
24.1.2.1.1 Examples of Feature Expressions 24-2
24.2 System Construction Dictionary 24-3

Chapter 25 (Environment)

25.1 The External Environment 25—-1
25.1.1 Top level loop 25-1
25.1.2 Debugging Utilities 251
25.1.3 Environment Inquiry 251
25. 1.4 Time 25-2
25.1.4.1 Decoded Time 252
25.1.4.2 Universal Time 25-3
25.1.4.3 Internal Time 25-4
25.1.4.4 Seconds . .. 254
25.2 Environment Dictionary 25-5

Chapter 26 (Glossary)
26.1 Glossary 261

Chapter A (Appendix)

A.1 Removed Language Features A-1
A.1.1 Requirements for removed and deprecated features A-1
A1.2 Removed Types A-1
A.1.3 Removed Operators A-1
A.1.4 Removed Argument Conventions A-1
A.1.5 Removed Variables A-1
A.1.6 Removed Reader Syntax A-1
A.1.7 Packages No Longer Required A-1

xviii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

print-array 22-66

print-base 22-67

print-case 2268
Index *print-circle* 2-36, 2-37, 22-69
print-escape 22-70
print-gensym 22-71
print-length 22-72
print-level 22-72
print-lines 22-73

2-29 *print-miser-width* 22-74

&allow-other-keys 3-35 *print-pprint-dispatch* 22-75

Laux 3-37 *print-pretty* 22-75

z:ﬁi};oniiit 342 _print-radix* 22°67
print-readably* 22-76

&key' 3-35 *print-right-margin* 22-78

&optlonal 3-35 *query-io* 21-57

&rest 3-35 *random-state* 12-53

whole 3-42 *read-base* 2 33, 2 34, 2319

2-24 *read-default-float-format* 23-19

?) 21725)3 96-2 *read-eval* 2-33, 23-20

(setf clas’s-name) 7-89 :igzg;?}?}l)g: es;;72§3721

(setf documentation) 25-17 *standard-input* 21-57

i ?;%:;’5 9596 *standard-output* 21-57

. 257276 *terminal-io* 21-59

sxx 95 96 *trace-output* 21-57

7-26, 12-36, 25-25
break-on-signals 9-35 __::_I_ 25,’25 ,

break-on-warnings A-1

compile-file-pathname 24-12 ++2—|:2825 2
compile-file-truename 24-12 . 12-36. 25-24
compile-print 24-13 . 993 ’
compile-verbose 24-13 940, 22-74
debug-io 21-57 .. 240,922 55
debugger-hook 9-34 / 12-37 7255,27
default-pathname-defaults 19-28 /] 2 572’7

error-output 21-57 :
features 1-30, 2-37, 24-10 /// 2527

gensym-counter® 10-9 {I %g,gg
load-pathname 24-13 1— 12-38
load-print 24-14 :absolute 19-7
load-truename 24-13 .back 19-8

load-verbose 24-14
macroexpand-hook 3-80
modules 24-14
package 11-40

:common 19-5
:compile-toplevel 3-60
:execute 3-60

Index 1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

:load-toplevel 3-60
:local 194

:relative 19-7
:unspecific 196

:up 19-8

:wild 19-5, 19-8
:wild-inferiors 19-5, 19-8

;0 2-24

< 1220
<= 12-20
= 12-20
> 1220
>= 12-20

A (format directive) 22-31

A (sharpsign reader macro) 2-35
abort 9-65, 9-68

abs 12-39

absolute 26-2

:absolute 19-7

access 26-2

accessibility 262

accessible 11-2, 26-2

accessor 262

acons 14-43
acos 12-29
acosh 12-33

active 15-2, 26-3

actual adjustability 26-3
actual argument 26-3
actual array element type 15-3, 26—3
actual complex part type 26-3
actual parameter 26-3
actually adjustable 26-3
add-method 7-87

adjoin 14-54

adjust-array 15-14
adjustability 26-3
adjustable 26-3
adjustable-array-p 15-18
after method 26-3

alist 26-3
allocate-instance 7-30
alpha-char-p 13-14
alphabetic 26-3
alphanumeric 26-3

ii Programming Language—Common Lisp

alphanumericp 13-15
ampersand 264

Ampersand (format directive) 22-25
and 4-28, 568, 7-26
anonymous 264

apparently uninterned 26—4
append 7-26, 14-30
applicable 26-4

applicable handler 26-4
applicable method 264
applicable restart 26-4

apply 26—4

apply 5-14

apropos 25-8

apropos-list 25-8

aref 15-18

argument 264

argument evaluation order 26—4
argument precedence order 26-4
arithmetic-error 12-89
arithmetic-error-operands 12-89
arithmetic-error-operation 12-89
around method 26-4

array 264

array 2-35, 15-5

array element type 26-5

array total size 26-5
array-dimension 15-19
array-dimension-limit 15-30
array-dimensions 15-20
array-displacement 15-22
array-element-type 15-21
array-has-fill-pointer-p 15-21
array-in-bounds-p 15-23
array-rank 15-24
array-rank-limit 15-30
array-row-major-index 15-25
array-total-size 15-26
array-total-size-limit 15-31
arrayp 1527

ash 1264

asin 12-29

asinh 12-33

assert 9-15

assign 26-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

assoc 14-43

assoc-if 14-43

assoc-if-not 1443
association list 14-2, 265
asterisk 26-5

Asterisk (format directive) 22-36
Asterisk (sharpsign reader macro) 2-32
at-sign 265

atan 12-29

atanh 12-33

atom 26-5

atom 14-5, 14-7

atomic 265

atomic type specifier 26-5
attribute 265

auzx variable 26-5

auziliary method 26-5

B (format directive) 22-26

B (sharpsign reader macro) 2-33
:back 19-8

backquote 266

Backquote (reader macro) 2-26
backslash 266

Backslash (sharpsign reader macro) 2-31
bar 1-15

base character 26-6

base string 26-6

base-char 13-8

base-string 162

baz 1-15

before method 266
bidirectional 21-2, 266
bignum 12-20

binary 21-1, 26-6

bind 26—6

binding 3-1, 266

bit 26-6

bit 12-19, 15-36

bit array 26—6

bit vector 15-3, 266

bit-and 15-37

bit-andcl 15-37

bit-andc2 15-37

bit-eqv 15-37

bit-ior 15-37

bit-nand 15-37
bit-nor 15-37
bit-not 15-37
bit-orcl 15-37
bit-orc2 1537

bit-vector 2-32, 15-9
bit-vector-p 15-39

bit-wise logical operation specifier

bit-xor 15-37
block 26-7
block 542
block tag 26-7
bnf key 1-8

boa lambda list 3-46, 267

body parameter 26-7

boole 12-67
boole-1 12-70
boole-2 12-70
boole-and 12-70

boole-andcl 12-70
boole-andc2 12-70

boole-c1 12-70
boole-c2 12-70
boole-clr 12-70
boole-eqv 12-70
boole-ior 12-70
boole-nand 12-70
boole-nor 12-70
boole-orcl 12-70
boole-orc2 12-70
boole-set 12-70
boole-xor 12-70
boolean 26-7
boolean 4-19
boolean equivalent
both-case-p 13-20
bound 26-7

26-7

bound declaration 3-30, 26—7

bounded 26-7

bounding index 26-7
bounding index designator

boundp 10-20
break 9-33
break loop 26-8

break-on-signals

9-35

26-8

26-6

Index

iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

broadcast stream 26-8 cdaadr 14-9
broadcast-stream 21-7 cdaar 14-9
broadcast-stream-streams 2147 cdadar 14-9
built-in class 26-8 cdaddr 14-9
built-in type 26-8 cdadr 14-9
built-in-class 4-23 cdar 14-9

butlast 14-33 cddaar 14-9

byte 26-8 cddadr 14-9

byte 12-76 cddar 14-9

byte specifier 268 cdddar 14-9
byte-position 12-76 cddddr 14-9
byte-size 12-76 cdddr 14-9

C (format directive) 22-24 cddr 26-9

C (sharpsign reader macro) 2-34 cddr 14-9

caaaar 14-9 cdr 26-9

caaadr 14-9 cdr 14-9

caaar 14-9 ceiling 12-25
caadar 14-9 cell 26-9

caaddr 14-9 cell-error 9-13
caadr 14-9 cell-error-name 9-14
caar 14-9 cerror 9-19

cadaar 14-9 change-class 7-38
cadadr 14-9 char 16-5

cadar 14-9 char-bit A-1
caddar 14-9 char-bits A-1
cadddr 14-9 char-bits-limit A-1
caddr 149 char-code 13-21
cadr 26-8 char-code-limit 13-23
cadr 14-9 char-control-bit A-1
call 26-8 char-downcase 13-19
call-arguments-limit 5-29 char-equal 13-10
call-method 7-73 char-font A-1
call-next-method 7-74 char-font-limit A-1
captured initialization form 26-8 char-greaterp 13-10
car 26-9 char-hyper-bit A-1
car 14-9 char-int 13-22

case 26-9 char-lessp 13-10
case 574 char-meta-bit A-1
case in symbol names 1-12 char-name 13-24
case sensitivity mode 26-9 char-not-equal 13-10
catch 26-9 char-not-greaterp 13-10
catch 5-43 char-not-lessp 13-10
catch tag 26-9 char-super-bit A-1
ccase bH-74 char-upcase 13-19
cdaaar 14-9 char/= 13-10

iv Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

char< 13-10
char<= 13-10
char= 13-10
char> 13-10

char>= 13-10

character 13-1, 21-1, 26-9
character 2-31, 13-8, 13-12
character code 26-9
character designator 26-10
characterp 13-13
check-type 9-22

circular 26-10

circular list 14-2, 14-4, 26-10
Circumflex (format directive) 22-41
cis 12-55

CL package 11-4

CL-USER package 11-7

class 4-8, 26-10

class 4-23

class designator 26-10

class precedence list 4-8, 4-12, 26-10
class-name 7-88

class-of 7-90

clear-input 21-42
clear-output 21-43

close 26-10

close 21-39

closed 21-2, 26-10

closure 26-10

clrhash 18-14

coalesce 3-14, 26-10

code 26-11

code-char A-1, 13-22

coerce 26-11

coerce 4-30

colon 26-11

Colon (sharpsign reader macro) 2-33
comma 26-11

Comma (reader macro) 2-28
comment 2-24, 2-38

:common 19-5

COMMON-LISP package 1-35,11-4
COMMON-LISP-USER package 11-7
commonp A-1

compilation 26-11

compilation environment 3-14, 26-11
compilation unit 26-11
compilation-speed 3-97

compile 26-11

compile 3-18, 3-57, 3-60

compile time 3-15, 26-11
compile-file 3-18, 24-3
compile-file-pathname 24-5
compile-file-pathname 24-12
compile-file-truename 24-12
compile-print 24-13
compile-time definition 3-15, 26-11
:compile-toplevel 360
compile-verbose 24-13
compiled code 3-14, 24-1, 26-11
compiled file 24-1, 26-12

compiled function 26-12
compiled-function 4-22
compiled-function-p 5-28
compiler 3-14, 26-12

compiler macro 3-18, 26—12
compiler macro expansion 2612
compiler macro form 26-12
compiler macro function 26-12
compiler-macro 25-18
compiler-macro-function 3-66
complement 5-65

compler 26-12

complex 2-34, 12-11, 12-56, 22-4
complex float 26-12

complex part type 26-12

complex rational 26-12

complex single float 26-13
complexp 12-57

composite stream 2613

compound form 26-13

compound type specifier 4-4, 26-13
compute-applicable-methods 776
compute-restarts 9-49
concatenate 17-29

concatenated stream 26-13
concatenated-stream 21-8
concatenated-stream-streams 21-50
cond 569

condition 26-13

Index v

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

condition 9-11

condition designator 9-3, 26-13
condition handler 26-13
condition reporter 9-4, 26-13
conditional newline 26-13
conditional newlines 22-14
conformance 26-13

conforming code 1-29, 26-13

conforming implementation 1-28, 26-13

conforming processor 26-14
conforming program 1-29, 26-14
congruence 7—19
congruent 26-14
conjugate 12-57

cons 14-1, 26-14

cons 2-26, 2-28, 14-5, 14-6
consequences 1-17

consp 14-6

constant 26-14

constant form 26-14
constant object 26-14
constant variable 26-14
constantly 5-66
constantp 3-104
constituent 26-14
constituent trait 26-14
constructed stream 26-15
contagion 26-15
continuable 26-15
continue 9-66, 9-68
control form 26-15
control-error 5-104

copy 26-15

copy-alist 14-45
copy-list 14-19
copy-pprint-dispatch 22-46
copy-readtable 234
copy-seq 17-5
copy-structure 8-18
copy-symbol 10-7
copy-tree 14-12
correctable 26-15

cos 12-28
cosh 12-33
count 17-15

vi Programming Language—Common Lisp

count-if 17-15

count-if-not 17-15

ctypecase 576

current input base 23-19, 26-15
current logical block 26-16
current output base 22-67, 26-16
current package 11-1, 26-16

current pprint dispatch table 22-16, 26-16

current random state 26-16
current readtable 2-1, 26-16
D (format directive) 22-26
data type 26-16

debug 3-97

debug I/0 26-16
debug-io 21-57
debugger 26-16
debugger-hook 9-34
decf 12-43

declaim 3-83

declaration 3-29, 26-16
declaration 3-29, 3-96
declaration identifier 3-29, 26-16
declaration specifier 3-29, 26-16
declare 26-17

declare 3-83

decline 26-17
decode-float 12-82
decode-universal-time 25-5
decoded time 25-2, 26-17
default method 7-19, 26-17

default-pathname-defaults 19-28

defaulted initialization argument list
defclass 7-60

defconstant 5-31

defgeneric 765
define-compiler-macro 3-67
define-condition 9-42
define-method-combination 7-76

define-method-combination arguments lambda list

48, 26-17
define-modify-macro 5-92

define-modify-macro lambda list 3-48, 26-17

define-setf-expander 5-96
define-symbol-macro 3-77

defined name 26-17

26-17

3-

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defining form 26-17
defmacro 3-70

defmethod 7-69

defpackage 11-29
defparameter 5-32

defsetf 5-93

defsetf lambda list 3-47, 26-17
defstruct 8-1

deftype 4-33

deftype lambda list 3-48, 26-17
defun 5-15

defvar 5-32

delete 17-32
delete-duplicates 17-35
delete-file 20-9

delete-if 17-32
delete-if-not 17-32
delete-package 11-17
denominator 12-61
denormalized 26-17
deposit-field 12-77

derived type 26-18

derived type specifier 4-5, 26-18
describe 25-9
describe-object 25-10
designator 1-14, 26-18
destructive 26-18
destructuring lambda list 3-45, 26-18
destructuring-bind 5-35
different 26-18

digit 26-18

digit-char A-1, 13-16
digit-char-p 13-16
dimension 15-1, 26-18
direct instance 26-18

direct subclass 4-8, 26-18
direct superclass 4-8, 26-18
directory 20-3
directory-namestring 19-28
disassemble 25-17
disestablish 26-18

disjoint 26-19

dispatching macro character 26-19
displaced array 26-19
distinct 26-19

division-by-
do 6-31
do* 6-31
do-all-symb

zero 12-90

ols 11-33

do-external-symbols 11-33

do-symbols

11-33

documentation 25-17

documentati

on string 26-19

dolist 6-37

Dollarsign (format directive) 22-30
dot 2-23, 22-55, 26-19

Dot (sharpsign reader macro) 2-33
Dot Dot 2-40, 22-74

Dot Dot Dot 2-40, 22-55

dotimes 6-35

dotted list
dotted pair
double float

14-2, 14-4, 26-19
26-19
26-19

double-float 12-14
double-float-epsilon 12-88
double-float-negative-epsilon 12-88

double-quote

26-19

Double-Quote (reader macro) 2-26

dpb 12-78

dribble 25-23

dynamic bin

ding 26-19

dynamic environment 3-2, 26-19
dynamic extent 26-19

dynamic scope 26-20

dynamic variable 26-20
dynamic-extent 3-86

E (format directive) 22-28

ecase 574
echo stream

26-20

echo-stream 21-9
echo-stream-input-stream 21-49
echo-stream-output-stream 21-49

ed 25-22

effective method 722, 26-20
eighth 14-25

element 26

—20

element type 26-20

elt 176
em 2620
empty list

14-4, 26-20

Index wvii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

empty type 26-20 exported 26-23
encode-universal-time 25—6 expressed adjustability 26-23
end of file 26-20 expressed array element type 15-3, 2623
end-of-file 21-61 expressed complex part type 26-23
endp 14-28 expression 26—23
enough-namestring 19-28 expressly adjustable 26-23
ensure-directories-exist 204 expt 1241
ensure-generic-function 7-29 extended character 26-23
environment 3-1, 26-21 extended function designator 26-23
environment object 3-3, 26-21 extended lambda list 2623
environment parameter 26-21 extended-char 13-9

eq 5956 extension 26-24

eql 4-30, 5-58 extensions 1-17, 1-18

equal 5-59 ertent 26-24

Equal-Sign (sharpsign reader macro) 2-36 external file format 26-24
equalp 5-62 external file format designator 26-24
error 2621 external symbol 11-2, 26-24
error 9-13, 9-17 externalizable object 3-23, 26-24
error output 26-21 F (format directive) 22-27

error terminology 1-15 false 26-24

error-output 21-57 fhound 26-24

escape 26-21 fboundp 5-18

establish 2621 fceiling 12-25

etypecase 5-76 fdefinition 5-17

eval 2-33, 3-59, 3-60 feature 24-1, 26-24

eval-when 3-20, 3-60 feature expression 24-1, 26-25
evaluate 26-21 features list 24-1, 26-25
evaluation 3-1, 26-21 *features* 1-30, 2-37, 24-10
evaluation environment 3-14, 26-21 flloor 12-25

evaluation order 3-63, 5-2, 5-43, 5-83, 6-5, 6-9, fifth 14-25

7-4, 9-16, 12-79 file 20-1, 2625

evenp 12-40 file compiler 26-25

every 567 file position 26-25

erecute 26-22 file position designator 26-25
rexecute 3-60 file stream 21-3, 2625
execution time 26-22 file system 2625

ezhaustive partition 26-22 file-author 20-6

ezhaustive union 26-22 file-error 20-10

exit point 26-22 file-error-pathname 20-11

exp 12-41 file-length 21-28

explicit return 26-22 file-namestring 19-28

explicit use 26-22 file-position 21-29

exponent marker 26-22 file-stream 21-9

export 26-22 file-string-length 21-31

export 11-8 file-write-date 20-7

viii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

filename 20-1, 26-25 format string 26-26

fin 17-7 formatter 22-46

fill pointer 152, 26-25 fourth 14-25

fill-pointer 15-27 free declaration 3-30, 26-26
fill-style conditional newline 22-18, 22-54 fresh 26-26

find 1720 fresh-line 21-21
find-all-symbols 11-12 freshline 26-27

find-class 7-71 fround 12-25

find-if 17-20 ftruncate 12-25

find-if-not 17-20 ftype 3-95

find-method 7-85 funbound 2627

find-package 11-11 funcall 5-24

find-restart 9-50 function 26-27

find-symbol 11-9 function 2-31, 4-20, 525, 25-18
finish-output 21-43 function block name 2627
finite 26-25 function cell 26-27

first 14-25 function designator 26-27
fiznum 26-26 function form 26-27

fixnum 12-20 function name 26-27

flet 5-20 function-keywords 7-28

float 2626 function-lambda-expression 5-26
float 12-13, 12-85, 22-3 functional evaluation 26-27
float-digits 12-82 functional value 2627
float-precision 12-82 functionp 5-28

float-radix 12-82 further compilation 3-14, 26-28
float-sign 12-82 G (format directive) 22-30
floating-point-inexact 12-91 ged 12-42
floating-point-invalid-operation 12-90 general 26-28
floating-point-overflow 12-91 generalized boolean 26—28
floating-point-underflow 12-91 generalized instance 26—28
floatp 12-86 generalized reference 5-1, 26-28
floor 12-25 generalized synonym stream 26-28
fmakunbound 5-19 generic function 4-22, 7-17, 26-28
font key 1-7 generic function lambda list 3-39, 26-28
foo 1-15 generic-function 4-22

for-value 26-26 gensym 26—28

force-output 21-43 gensym 10-8

form 26-26 *gensym-counter* 10-9

formal argument 2626 gentemp 10-10

formal parameter 26-26 get 10-17

format 26-26 get-decoded-time 256

format 22-80 get-dispatch-macro-character 23-13
format argument 26-26 get-internal-real-time 25-15
format control 22-16, 26-26 get-internal-run-time 25-16
format directive 26-26 get-macro-character 23-14

Index ix

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

get-output-stream-string 21-52
get-properties 1448
get-setf-expansion 5-98
get-universal-time 25-6
getf 14-49

gethash 18-10

global declaration 3-29, 26-29
global environment 3-1, 26-29
global variable 26-29

glyph 2629

go 2629

go 544

go point 26-29

go tag 26-29

graphic 13-3, 26-29
graphic-char-p 13-17
Greater-Than-Sign (format directive) 22-36
handle 26-29

handler 26-29

handler-bind 9-37
handler-case 9-38

hash table 26-29

hash-table 184
hash-table-count 18-6
hash-table-p 18-5
hash-table-rehash-size 18-7
hash-table-rehash-threshold 18-8
hash-table-size 18-9
hash-table-test 18-9

home package 26-29
host-namestring 19-28

I (format directive) 22-33
I/0 customization variable 26-29
identical 26-30

identifier 26-30

identity 5-64

if 5-70

ignorable 3-85

ignore 3-85

ignore-errors 9-41
imagpart 12-59

immutable 26-30
implementation 26-30
implementation limit 26-30
implementation-defined 26-30

x Programming Language—Common Lisp

implementation-dependent 26-30
implementation-independent 26-30
implicit block 26-30

implicit compilation 3-14, 26-30
implicit progn 26-30

implicit tagbody 26-31

import 26-31

import 11-12

improper list 14-2, 26-31
in-package 11-26

inaccessible 26-31

incf 12-43

indefinite extent 26-31
indefinite scope 26-31

indicator 26-31

indirect instance 26-31

inherit 26-31

initial pprint dispatch table 26-31
initial readtable 2-2, 26-31
initialization argument list 7-1, 26-31
initialization form 26-31
initialize-instance 7-88

inline 3-93

mput 21-1, 26-31
input-stream-p 21-11

inspect 25-23

instance 4-8, 26-31

int-char A-1

integer 26-31

integer 12-17
integer-decode-float 12-82
integer-length 12-65

integerp 12-66

interactive stream 21-2, 26-32
interactive-stream-p 21-12
intern 26-32

intern 11-35

internal symbol 11-2, 26-32
internal time 25-4, 26-32
internal time unit 26-32
internal-time-units-per-second 25-15
interned 26-32

interpreted function 26-32
interpreted implementation 26-32
intersection 14-52

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

interval designator 26-32

invalid 26-32

invalid-method-error 9-25
invoke-debugger 9-32

invoke-restart 9-52
invoke-restart-interactively 9-53

is signaled 1-16

isqrt 12-49

iteration form 26-32

iteration variable 26-33

key 26-33

keyword 26-33

KEYWORD package 11-7

keyword 104

keyword parameter 26-33

keyword/value pair 26-33

keywordp 10-5

labels 5-20

lambda 3-56

lambda combination 26-33

lambda expression 26-33

lambda form 26-33

lambda list 3-33, 26-33

lambda list keyword 26-34

lambda variable 26-34
lambda-list-keywords 5-30
lambda-parameters-limit 5-30

last 14-34

lem 12-44

Idb 12-79

Idb-test 12-80

1diff 14-35

leaf 26-34

leap seconds 26-34
least-negative-double-float 12-87
least-negative-long-float 12-87
least-negative-normalized-double-float 12-87
least-negative-normalized-long-float 12-87
least-negative-normalized-short-float 12-87
least-negative-normalized-single-float 12-87
least-negative-short-float 12-87
least-negative-single-float 12-87
least-positive-double-float 12-87
least-positive-long-float 12-87
least-positive-normalized-double-float 12-87

least-positive-normalized-long-float 12-87
least-positive-normalized-short-float 12-87
least-positive-normalized-single-float 12-87
least-positive-short-float 12-87
least-positive-single-float 12-87

leaves 14-1

Left-Brace (format directive) 22-37
Left-Bracket (format directive) 22-36
Left-Paren (format directive) 22-39
left-parenthesis 26-34

Left-Parenthesis (reader macro) 2-23
Left-Parenthesis (sharpsign reader macro) 2-31
length 26-34

length 17-16

Less-Than-Sign (format directive) 22-32, 22-35
Less-Than-Sign (sharpsign reader macro) 2-39
let 5-36

let* 5-36

lexical binding 26-34

lezical closure 26-34

lexical environment 3-2, 26—34

lezical scope 26-34

lezical variable 26-34

linear-style conditional newline 22-17, 22-54
LISP package A-1

Lisp image 26-34

Lisp printer 26-35

Lisp read-eval-print loop 26-35

Lisp reader 26-35
lisp-implementation-type 25-28
lisp-implementation-version 25-28

list 14-2, 14-4, 26-35

list 2-23, 2-26, 2-28, 7-26, 14-4, 14-20

list designator 26-35

list structure 26-35

list* 14-20

list-all-packages 11-14

list-length 1421

listen 21-41

listp 14-22

literal 26-35

literal object 3-14

load 26-35

load 3-60, 24-6

load time 26-36

Index xi

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

load time value 26-36

load-logical-pathname-translations 19-22

load-pathname 24-13
load-print 24-14
load-time-value 3-18, 3-63
:load-toplevel 360
load-truename 24-13
load-verbose 24-14
loader 26-36

:local 194

local declaration 3-29, 26-36
local precedence order 4-9, 4-12, 26-36
local slot 26-36

locally 3-100

log 12-45

logand 12-71

logandcl 12-71

logandc2 12-71

logbitp 12-73

logcount 12-74

logeqv 12-71

logical block 26-36

logical blocks 22-14

logical host 26-36

logical host designator 26-36
logical pathname 26-36
logical-pathname 19-15, 19-27
logical-pathname-translations 19-23
logior 12-71

lognand 12-71

lognor 12-71

lognot 12-71

logorcl 12-71

logorc2 12-71

logtest 12-75

logxor 12-T71

long float 26-36

long-float 12-14
long-float-epsilon 12-88
long-float-negative-epsilon 12-88
long-site-name 2528
loop 6-38

loop keyword 26-36
loop-finish 642
lower-case-p 13-20

xii Programming Language—Common Lisp

lowercase 26-37
machine-instance 25-29
machine-type 25-30
machine-version 25-30
macro 3-18, 26-37

macro character 26-37
macro expansion 26-37
macro form 26-37

macro function 26-37

macro lambda list 3-41, 26-37
macro name 26-37
macro-function 3-73
macroexpand 3-75
macroexpand hook 26-37
macroexpand-1 3-75
macroexpand-hook 3-80
macrolet 3-18, 5-20
make-array 15-10
make-broadcast-stream 21-47
make-char A-1
make-concatenated-stream 21-51
make-condition 9-47

make-dispatch-macro-character 23-5

make-echo-stream 21-50
make-hash-table 184
make-instance 7-49
make-instances-obsolete 7-50
make-list 14-23

make-load-form 7-51
make-load-form-saving-slots 7-55
make-method 7-73
make-package 11-20
make-pathname 19-17
make-random-state 12-51
make-sequence 17-8

make-string 16-13
make-string-input-stream 21-53
make-string-output-stream 21-53
make-symbol 10-6
make-synonym-stream 21-46
make-two-way-stream 21-48
makunbound 10-21
mandatory-style conditional newline
map 17-10

map-into 17-12

22-54

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

mapc 14-40

mapcan 14-40

mapcar 14-40

mapcon 1440

maphash 18-12

mapl 14-40

maplist 14-40

mapping 26-37

mask-field 12-81

max 7-26, 12-22

member 4-27, 14-39
member-if 14-39
member-if-not 14-39

merge 17-30

merge-pathnames 19-38
metaclass 4-1, 4-9, 26-37
Metaobject Protocol 26-37
method 26-38

method 4-24

method combination 26-38
method-combination 4-26, 25-18
method-combination-error 9-26
method-defining form 26-38
method-defining operator T7-18, 26-38
method-qualifiers 7-47

might signal 1-17

min 7-26, 12-22

minimal compilation 3-14, 26-38
Minus (sharpsign reader macro) 2-37
minusp 12-24

miser-style conditional newline 22-17, 22-54
mismatch 17-24

mod 12-19, 12-47

modified lambda list 26-38
modules 24-14

most recent 2638
most-negative-double-float 12-87
most-negative-fixnum 12-82
most-negative-long-float 12-87
most-negative-short-float 12-87
most-negative-single-float 12-87
most-positive-double-float 12-87
most-positive-fixnum 12-82
most-positive-long-float 12-87
most-positive-short-float 12-87

most-positive-single-float 12-87

muffle-warning 9-66, 9-68
multiple escape 2-9, 26-38
multiple values 26-38
multiple-value-bind 5-79
multiple-value-call 5-81
multiple-value-list 5-81
multiple-value-progl 5-82
multiple-value-setq 5-83
multiple-values-limit 5-86
must signal 1-16

name 1-7, 26-39
name-char 13-25

named constant 26-39
namespace 3—1, 26—-39
namestring 19-1, 26-39
namestring 19-28
nbutlast 14-33

nconc 7-26, 14-29
newline 26-39

Newline (format directive) 22-42

next method 7-23, 26-39
next-method-p 7-72
nickname 26-39

nil 1-13, 26-39

nil 1-13, 4-19, 5-54
nintersection 14-52
ninth 14-25
no-applicable-method 7-47
no-next-method 7-48
non-atomic 26-39
non-constant variable 26-39
non-correctable 26—40
non-empty 26-40
non-generic function 26—40
non-graphic 13-3, 26-40
non-list 2640

non-local exit 26—40
non-nil 26-40

non-null lexical environment
non-simple 26-40
non-terminating 2-8, 26-40
non-top-level form 26-40
normal return 26-40
normalized 26—40

26-40

Index xiii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

not 4-27, 5-55

notany 567

notation 1-7

notevery 567
notinline 3-29, 3-93
nreconc 14-31
nreverse 17-17
nset-difference 14-56
nset-exclusive-or 14-58
nstring-capitalize 16-7
nstring-downcase 167
nstring-upcase 167
nsublis 14-13

nsubst 14-15

nsubst-if 14-15
nsubst-if-not 14-15
nsubstitute 17-26
nsubstitute-if 17-26
nsubstitute-if-not 17-26
nth 14-27

nth-value 5-86

nthedr 14-37

null 13-2, 2640

null 14-4, 14-28

null lexical environment 3-3, 26-41
number 26—41

number 12-11
numberp 12-54
numerator 12-61
numeric 26-41

nunion 14-61

O (format directive) 22-27
O (sharpsign reader macro) 2-33
object 2641
object-traversing 26-41
oddp 12-40

open 21-2, 26-41

open 21-32
open-stream-p 21-12
operator 26-41
optimize 3-97

optimize quality 26—41
optional parameter 2642
or 4-28, 5-71, 7-26
order of evaluation 3-63, 5-2, 5-43, 5-83, 6-5, 6—

xiv Programming Language—Common Lisp

9, 7-4, 9-16, 12-79

ordinary function 26-42
ordinary lambda list 3-33, 2642
otherwise 5-74, 577

otherwise inaccessible part 26-42
output 21-1, 2642
output-stream-p 21-11

P (format directive) 22-40

P (sharpsign reader macro) 2-36
package 11-1, 26-42

package 11-8

package cell 2642

package designator 26-42
package marker 26-42

package prefiv 26-42

package registry 2642
package 11-40

package-error 11-41
package-error-package 11-42
package-name 11-36
package-nicknames 11-37

package-shadowing-symbols 11-37

package-use-list 11-38
package-used-by-list 11-39
packagep 11-40

pairlis 14-46

pairwise 26—43

parallel 26-43

parameter 26-43
parameter specializer 26—43
parameter specializer name 26-43
parse-error 9-14
parse-integer 12-66
parse-namestring 19-30
pathname 19-1, 26-43
pathname 2-36, 19-15
pathname designator 26-43
pathname-device 19-20
pathname-directory 19-20
pathname-host 19-20
pathname-match-p 19-34
pathname-name 19-20
pathname-type 19-20
pathname-version 19-20
pathnamep 19-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

peek-char 21-17

Percent (format directive) 22-25
phase 12-58

physical pathname 2643
pi 12-32

place 5-1, 2643

plist 2643

Plus (sharpsign reader macro) 2-37
plusp 12-24

pop 14-24

portable 26-43

position 17-21

position-if 17-21
position-if-not 17-21
potential copy 26—44
potential number 26-44
pprint 2261

pprint dispatch table 22-16, 26-44
pprint-dispatch 22-47
pprint-exit-if-list-exhausted 2248
pprint-fill 22-49
pprint-indent 22-50
pprint-linear 22-49
pprint-logical-block 22-51
pprint-newline 22-53
pprint-pop 22-55
pprint-tab 22-57
pprint-tabular 22-49
predicate 26-44

prepared to signal 1-16
present 11-2, 24-1, 26-44
pretty print 26-44

pretty printer 22-14, 2644
pretty printing stream 26-44
primary method 26-44
primary value 26-44
prinl 22-61
prinl-to-string 22-64
princ 2261
princ-to-string 22-64
principal 26-44

print 22-61

print name 26-45
print-array 22-66
print-base 2267

print-case
print-circle

22-68
2-36, 2-37, 22-69

print-escape 22-70
print-gensym 22-71
print-length 22-72

print-level
print-lines

22-72
22-73

print-miser-width 22-74
print-not-readable 22-79
print-not-readable-object 22-79

print-object

22-57

print-pprint-dispatch 22-75
print-pretty 22-75

print-radix

22-67

print-readably 22-76
print-right-margin 22-78
print-unreadable-object 22-59
printer control variable 221, 26-45
printer escaping 22-2, 26-45
printing 26-45

probe-file 20-3

process 3-14,

26-45

processor 2645
proclaim 26-45
proclaim 3-81

proclamation
prog 587

3-29, 26-45

prog tag 2645

prog* 587
progl 589
prog2 5-89
progn 591,

726

program 26-45
program-error 5-104

programmer

26-45

programmer code 26—45

progv 5-38

proper list 14-2, 14-4, 26-45

proper name

26-45

proper sequence 2646

proper subtype

26-46

property 26-46
property indicator 26-46

property list
property value

26-46
26-46

Index xv

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

provide 24-15

psetf 5-99

psetq 5-40

purports to conform 26-46
push 14-23

pushnew 14-55

qualified method 26-46
qualifier 26—46

query I/O 26-46

query-io 21-5H7
Question-Mark (format directive) 22-39
quotation (of forms) 2-24, 2-26, 2-28
quotation (of strings) 2-26
quote 2-24, 2-26, 2-28, 3-65
quoted object 26-46

quux 1-15

R (format directive) 22-25

R (sharpsign reader macro) 2-34
radix 26-47

random 12-52

random state 26-47
random-state 12-50
random-state 12-53
random-state-p 12-53

rank 15-1, 26-47

rassoc 14-47

rassoc-if 14-47
rassoc-if-not 14-47

ratio 2647

ratio 12-16, 22-3

ratio marker 2647

rational 26-47

rational 12-16, 12-62
rationalize 12-62

rationalp 12-63

read 26-47

read 236

read-base 2-33, 2-34, 23-19
read-byte 21-15

read-char 21-18
read-char-no-hang 21-19
read-default-float-format 23-19
read-delimited-list 23-8
read-eval 2-33, 2320
read-from-string 23-10

xvi Programming Language—Common Lisp

read-line 21-24
read-preserving-whitespace 236
read-sequence 21-26
read-suppress 23-21
readably 26-47

reader 26-47

reader macro 26-47
reader macro function 2-8, 2647
reader-error 23-23
readtable 2-1, 26-47
readtable 234
readtable case 26-47
readtable designator 26-48
readtable 23-22
readtable-case 23-11
readtablep 23-12

real 12-12

realp 12-60

realpart 12-59
recognizable subtype 26-48
redefinition 11-5
reduce 17-13

reference 26—48
registered package 26-48
reinitialize-instance 7-31
relative 26—48

:relative 19-7

rem 12-47

remf 14-51

remhash 18-11

remove 17-32
remove-duplicates 17-35
remove-if 17-32
remove-if-not 17-32
remove-method 7-49
remprop 10-19
rename-file 20-8
rename-package 11-14
repertoire 13—-2, 26—48
replace 17-25

report 26-48

report message 94, 26-48
require 24-15

required parameter 26-48
rest 14-38

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

rest list 26-48

rest parameter 2648

restart 26-48

restart 9-48

restart designator 26-49

restart function 26-49
restart-bind 9-54

restart-case 9-56

restart-name 961

return 26-49

return 547

return value 26-49

return-from 5-45

revappend 14-31

reverse 17-17

Right-Brace (format directive) 22-39
Right-Bracket (format directive) 22-37
Right-Paren (format directive) 22-40
right-parenthesis 26-49
Right-Parenthesis (reader macro) 2-23
room 25-21

rotatef 5-103

round 12-25
row-major-aref 15-28
rplaca 14-8

rplacd 14-8

run ttme 3-15, 26—49

run-time compiler 3-15, 26-49
run-time definition 3-15, 26-49
run-time environment 3-15, 26—49
S (format directive) 22-31

S (sharpsign reader macro) 2-36
safe 1-15, 26-49

safe call 3-50, 2649

safety 3-29, 3-97

same 26—49

satisfies 4-26

satisfy the test 17-2, 17-4, 26-50
sbit 15-36

scale-float 12-82

schar 16-5

scope 26-50

script 26-50

search 17-23

second 14-25

secondary value 26-50
section 26-50

sections 22-14
self-evaluating object 26-50
semi-standard 26-50
semicolon 26-5H1

Semicolon (format directive) 22-40
Semicolon (reader macro) 2-24
sequence 17-1, 26-51
sequence 17-5

sequence function 17-1, 26-51
sequential 26-51

sequentially 26-51

serious condition 26-51
serious-condition 9-12
sesston 26-5H1

set 26-51

set 10-22

set-char-bit A-1
set-difference 14-56

set-dispatch-macro-character 23-13

set-exclusive-or 14-58
set-macro-character 23-14
set-pprint-dispatch 22-60
set-syntax-from-char 23-16
setf 5-99, 25-18

setf expander 26-51

setf expansion 26-51

setf function 26-51

setf function name 26-51

setq 5-39

seventh 14-25

shadow 3-11, 4-8, 26-51
shadow 11-15

shadowing symbol 11-3, 11-4, 26-5
shadowing symbols list 26-51
shadowing-import 11-16

shared slot 26-52
shared-initialize 7-32

sharpsign 26-52

Sharpsign (reader macro) 2-29
Sharpsign (sharpsign reader macro)
Sharpsign A (reader macro) 2-35
Sharpsign Asterisk (reader macro)
Sharpsign B (reader macro) 2-33

1

2-37

2-32

Index xvii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Sharpsign Backslash (reader macro) 2-31
Sharpsign C (reader macro) 2-34

Sharpsign Colon (reader macro) 2-33
Sharpsign Dot (reader macro) 2-33

Sharpsign Equal-Sign (reader macro) 2-36
Sharpsign Left-Parenthesis (reader macro) 2-31
Sharpsign Less-Than-Sign (reader macro) 2-39
Sharpsign Minus (reader macro) 2-37
Sharpsign O (reader macro) 2-33

Sharpsign P (reader macro) 2-36

Sharpsign Plus (reader macro) 2-37

Sharpsign R (reader macro) 2-34

Sharpsign Right-Parenthesis 2-40

Sharpsign S (reader macro) 2-36

Sharpsign Sharpsign (reader macro) 2-37, 22-56

Sharpsign Single-Quote (reader macro) 2-31
Sharpsign Vertical-Bar (reader macro) 2-38
Sharpsign Whitespace 2-39, 2-40

Sharpsign X (reader macro) 2-34

shiftf 5-101

short float 26-52

short-float 12-14

short-float-epsilon 12-88
short-float-negative-epsilon 12-88
short-site-name 25-28

should signal 1-16

sign 26-52
signal 1-16, 1-17, 26-52
signal 9-27

signature 26-52
signed-byte 12-17
signum 12-48

similar 3-23, 26-52
similarity 26-52
stmple 26-52

simple array 26-52
simple bit array 26-52
simple bit vector 26-52
simple condition 26-52
simple general vector 26-52
simple string 26-52
simple vector 26-53
simple-array 156
simple-base-string 16—4

xviii Programming Language—Common Lisp

simple-bit-vector 2-32,
simple-bit-vector-p 1540
simple-condition 9-28

simple-condition-format-arguments

15-10

simple-condition-format-control 9-29

simple-

error 9-25

simple-string 16-3

simple-
simple-
simple-

sixth

string-p 164
type-error 4-42

vector 2-31, 15-8
simple-vector-p 15-31
simple-warning 9-31
sin 12-28

single escape 2-9, 26-53
single float 26-53
single-float 12-14
single-float-epsilon 1288
single-float-negative-epsilon 12-88
single-quote 26-53
Single-Quote (reader macro) 2-24
Single-Quote (sharpsign reader macro)
singleton 26-53
sinh 12-33
situation 26-53

14-25

slash 26-53
Slash (format directive)

sleep

25-7

slot 26-53

slot specifier 4-10, 26-53
slot-boundp 7-40
slot-exists-p 741
slot-makunbound 7-42
slot-missing 7-43
slot-unbound 744
slot-value 7-45
software-type 25-31
software-version 25-31

some

567

sort 17-18
source code 24-1, 2653
source file 24-1, 26-53

space
space
special

26-53
3-97
3-29, 3-98

22-33

9-29

2-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

special form 26-53

special operator 26-53

special variable 26-53
special-operator-p 3-103
specialize 26-54

specialized 2654

specialized lambda list 3-40, 26-54
speed 3-97

spreadable argument list designator 26-54
sqrt 12-49

stable-sort 17-18

stack allocate 26-54
stack-allocated 26-54

standard 7-24, 7-26

standard character 2-2, 26-54
standard class 26-54

standard generic function 26-54
standard input 26-54

standard method combination 26-54
standard object 26-54

standard output 26-55

standard pprint dispatch table 26-55
standard readtable 2-1, 26-55
standard syntar 2-1, 26-55
standard-char 13-9
standard-char-p 13-18
standard-class 4-24
standard-generic-function 4-23
standard-input 21-57
standard-method 4-25
standard-object 4-25
standard-output 21-57
standardized 26-55

startup environment 3-14, 26-55
step 26-H5

step 25-13

storage-condition 9-15
store-value 9-67, 9-68

stream 20-1, 21-1, 21-2, 26-55
stream 21-7

stream associated with a file 20-1, 26-55
stream designator 26-56

stream element type 26-56

stream variable 21-4, 26-56
stream variable designator 26-56

stream-element-type

stream-error

21-60

21-13

stream-error-stream 21-60
stream-external-format
streamp 21-14

string 15-3, 26-56
string 2-26, 16-2, 166
string designator 26-56

string equal 2
string stream

6-56
26-56

string-capitalize 16-7
string-char A-1

string-char-p

A-1

string-downcase 16-7

string-equal

16-10

string-greaterp 16-10
string-left-trim 16-9
string-lessp 16-10

string-not-equ

al 16-10

21-36

string-not-greaterp 16-10

string-not-less

p 16-10

string-right-trim 16-9

string-stream
string-trim 1
string-upcase
string/= 16—

21-10
6-9

16-7
10

string< 16-10

string<= 16—

10

string= 16-10
string> 16-10

string>= 16—

10

stringp 16-12
structure 26-56
structure 2-36, 25-19

structure class
structure name

26-56
26-56

structure-class 4-24

structure-obje
style warning
style-warning
subclass 4-8,
subexpression

ct 4-25
26-56
9-12
26-56
26-57

subform 26-57

sublis 14-13
subrepertoire

26-57

Index xix

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subseq 179

subsetp 14-59

subst 14-15

subst-if 14-15
subst-if-not 14-15
substitute 17-26
substitute-if 17-26
substitute-if-not 17-26
subtype 26-57

subtypep 4-34

superclass 4-8, 26-57
supertype 2657
supplied-p parameter 26-57
svref 15-32

sxhash 18-15

symbol 26-57

symbol 2-33, 10-2
symbol macro 3-18, 26-57
symbol-function 10-11
symbol-macrolet 3-18, 3-79
symbol-name 10-13
symbol-package 10-14
symbol-plist 10-15
symbol-value 10-16
symbolp 104

synonym stream 26-57
synonym stream symbol 26-57
synonym-stream 21-10
synonym-stream-symbol 21-46
syntaz type 2-5, 26-57
SYSTEM package A-1
system class 26-H8
system code 26-58

t 26-58

t 4-26, 5-55, 5-74, 5-77, 25-18, 25-19
T (format directive) 22-34
tag 26-58

tagbody 548

tail 26-58

tailp 14-35

tan 12-28

tanh 12-33

target 26-58

tenth 14-25

terminal I/O 26-58

xx Programming Language—Common Lisp

terminal-io 21-59
terminating 2-8, 26-58
terpri 21-21

tertiary value 26-58

the 3-102

third 14-25

throw 26-58

throw 5-49

tilde 26-58

Tilde (format directive) 22-25
Tilde A (format directive) 22-31

Tilde Ampersand (format directive) 22-25

Tilde Asterisk (format directive) 22-36
Tilde B (format directive) 22-26
Tilde C (format directive) 22-24

Tilde Circumflex (format directive) 22-41

Tilde D (format directive) 22-26

Tilde Dollarsign (format directive) 22-30

Tilde E (format directive) 22-28

Tilde F (format directive) 22-27

Tilde G (format directive) 22-30
(

Tilde Greater-Than-Sign (format directive) 22-36

Tilde I (format directive) 22-33

Tilde Left-Brace (format directive) 22—

37

Tilde Left-Bracket (format directive) 22-36
Tilde Left-Paren (format directive) 22-39

Tilde Less-Than-Sign (format directive)
35

Tilde Newline (format directive) 22-42
Tilde O (format directive) 22-27
Tilde P (format directive) 22-40

Tilde Percent (format directive) 22-25
Tilde Question-Mark (format directive)
Tilde R (format directive) 22-25

22-32, 22—

22-39

Tilde Right-Brace (format directive) 22-39

Tilde Right-Bracket (format directive)

22-37

Tilde Right-Paren (format directive) 22-40

Tilde S (format directive) 22-31

Tilde Semicolon (format directive) 22-40

Tilde Slash (format directive) 22-33
Tilde T (format directive) 22-34
Tilde Tilde (format directive) 22-25

Tilde Underscore (format directive) 22-32
Tilde Vertical-Bar (format directive) 22-25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Tilde W (format directive) 22-32
Tilde X (format directive) 22-27
time 26-58

time 25-14

time zone 26-59

token 2—6, 26-59

top level form 26-59

trace 25-12

trace output 26-59
trace-output 21-57
translate-logical-pathname 19-35
translate-pathname 19-36

tree 14-1, 26-59

tree structure 26-59

tree-equal 14-18

true 26-59

truename 20-2, 26-59
truename 20-5

truncate 12-25

two-way stream 26-59
two-way-stream 21-11
two-way-stream-input-stream 21-49
two-way-stream-output-stream 21-49
type 26-59

type 3-90, 25-19

type declaration 26-60

type equivalent 26-60

type expand 26-60

type specifier 26—60

type-error 4-41
type-error-datum 4-41
type-error-expected-type 4-41
type-of 4-37

typecase 5-76

typep 4-39

unbound 26-60

unbound variable 26—60
unbound-slot 7-90
unbound-slot-instance 7-91
unbound-variable 10-23
undefined consequences 1-17
undefined function 2660
undefined-function 5-104
Underscore (format directive) 22-32
unexport 11-24

unintern 26-60

unintern 11-25

uninterned 26-60

union 14-61

universal time 25-3, 26—60
unless 5-72

unqualified method 2660
unread-char 21-22
unregistered package 26—60
unsafe 1-16, 2660

unsafe call 3-51, 2661
unsigned-byte 12-18
:unspecific 19-6
unspecified consequences 1-17
unspecified values 1-17
untrace 25-12
unuse-package 11-27
unwind-protect 5-51

:up 19-8
update-instance-for-different-class
update-instance-for-redefined-class
upgrade 26-61

734
7-35

upgraded array element type 15-3, 26-61

upgraded complex part type 26-61

upgraded-array-element-type 15-29
upgraded-complex-part-type 12-60

upper-case-p 1320

uppercase 2661

use 26-61

use list 26-61

use-package 11-28

use-value 9-68

user 26-61

USER package A-1
user-homedir-pathname 25-32
valid array dimension 2661
valid array inder 2662

valid array row-major index 26-62
valid fill pointer 26-62

valid logical pathname host 26-62
valid pathname device 2662
valid pathname directory 26-62
valid pathname host 2662

valid pathname name 2662
valid pathname type 26-62

Index xxi

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

valid pathname version 26-62
valid physical pathname host 2662
valid sequence inder 26—62
value 26-63

value cell 26-63

values 4-29, 5-84

values-list 5-85

variable 26-63

variable 25-19

vector 15-1, 26-63

vector 2-31, 15-7, 15-33
vector-pop 15-33
vector-push 15-34
vector-push-extend 15-34
vectorp 15-36

vertical-bar 26-63
Vertical-Bar (format directive) 22-25
Vertical-Bar (sharpsign reader macro)
W (format directive) 22-32
warn 9-29

warning 9-11

warning 1-18

when 5-72

whitespace 26—63

wild 26-63

:wild 19-5, 19-8
:wild-inferiors 19-5, 19-8
wild-pathname-p 19-33
with-accessors 7-56
with-compilation-unit 24-8
with-condition-restarts 9-62
with-hash-table-iterator 18-13
with-input-from-string 21-54
with-open-file 21-37
with-open-stream 21-40
with-output-to-string 21-55
with-package-iterator 11-21
with-simple-restart 9-63
with-slots 7-58
with-standard-io-syntax 23-17
write 2663

write 22-61

write-byte 21-16

write-char 21-23

write-line 21-25

xxii Programming Language—Common Lisp

write-sequence

21-27

write-string 21-25

write-to-string 22-64
writer
X (format directive) 22-27
X (sharpsign reader macro)

y-or-n-p 21-44

26-63

yes-or-no-p 21-44

yield 26-64
zerop 12-25
¢ 2-26

2-34

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Credits

Principal Technical Editors:

Kent M. Pitman Harlequin, Inc. 1993-present
Symbolics, Inc. 1990-1992
Kathy Chapman Digital Equipment Corporation 1987-1989

Occasional Guest Editors:

Richard P. Gabriel Lucid, Inc.
Sandra Loosemore self

Financial Contributors to the Editing Process:

Digital Equipment Corporation
Harlequin, Ltd. and Harlequin, Inc.
Symbolics, Inc.

Apple, Inc.

Franz, Inc.

Lucid, Inc.

Special thanks to Guy L. Steele Jr. and Digital Press for producing Common
Lisp: The Language, and for relaxing copyright restrictions enough to make it
possible for that document’s text to provide an early basis of this work.

Credits 1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Edit and Review History:

01-Jan-89
01-Jan-89
01-May-89
01-May-89
01-Jun-89
01-Jun-89
15-Jun-89
16-Jun-89
23-Jun-89
07-Jul-89
12-Jul-89
15-Jul-89
18-Jul-89
25-Jul-89
26-Jul-89
26-Jul-89
27-Jul-89
27-Jul-89
28-Jul-89
28-Jul-89
01-Oct-89
20-Jan-91
29-Jan-91
01-Mar-91
01-Mar-91
01-Mar-91
13-Mar-90
21-Mar-91
26-Apr-91
15-May-91
04-Jun-91
10-Jun-91
02-Sep-91
02-Sep-91
15-Sep-91

18-Sep-91
21-Sep-91

28-Sep-91

Chapman
Pitman
Chapman
Gabriel
Loosemore
Pitman
Gabriel
Margolin
Gabriel
Moon
Gabriel
Pitman
Gray
Gabriel
Gabriel
Gabriel
Pitman
Gabriel
Chapman
Gabriel
Margolin
Pitman
Waters
Moon
Barrett
Moon
Wechsler
Kerns
Margolin
Barrett
Laddaga
Pitman
Barrett
Barrett
Barrett

‘Wechsler
Barrett

Barrett

Draft of Chapters 1.1 (scope).

Draft of Chapters 5.1 (conditions).

Draft of 1.2-1.6.

Rewrite of Chapters 1.1 and 5.1.

Review of Chapter 4.2.

Review of Glossary

Rewrite of Glossary

Comments on Chapters 2.1-2.4 (types, objects).

Rewrite of 4.2.

Review of Chapters 4.1, 4.3

Revision of 4.2.

Review of Glossary

Comments on 5.1

Revision of Chapters 1.2-1.6, 2.2

Rewrite of 5.1

Rewrite of 4.1.

Revision of 5.1

Revision of 5.1

Draft of 2.2, 3.2, 3.3, 5.4

Revision of Glossary.

Review of Dictionary from Jun-89 draft.

Draft 8.81 (for X3J13 review). Document X3J13/91-101.

Review of 8.81/Chapter 23 (Printer).

Review of 8.81/Chapter 4 (Evaluation and Compilation).

Review of 8.81/Chapter 4 (Evaluation and Compilation).

Review of 8.81/Glossary.

Review of 8.81/Glossary.

Review of 8.81/Chapter 1.

Review of 8.81/Chapters 1-12.

Review of 8.81/Chapters 5 (Misc), 11 (Conditions).

Review of 9.60/Chapter 20 (Pathnames).

Draft 9.126 (for X3J13 review). Document X3J13/91-102.

Review of 9.28/Chapter 4 (Evaluation and Compilation).

Review of 9.52/Chapter 4 (Evaluation and Compilation).

Review of 9.126/Chapter 4 (Evaluation and Compilation)
and Chapter 7 (Evaluation/Compilation).
(some comments not yet merged)

Review of 9.126.

Review of 10.16/Chapter 7 (Evaluation/Compilation).
(some comments not yet merged)

Review of 10.95/Chapter 25 (Printer).
(some comments not yet merged)

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

13-Oct-91
15-Oct-91
24-Oct-91
04-Nov-91

11-Nov-91

02-Dec-91

02-Dec-91

09-Dec-91

09-Dec-91
09-Dec-91

10-Dec-91

10-Dec-91

10-Dec-91

18-Dec-91

04-Jan-92

04-Jan-92

04-Jan-92
04-Jan-92

06-Jan-92
06-Jan-92
06-Jan-92

07-Jan-92
03-Feb-92

Barrett
Waters
Pitman

Moon

Loosemore

Barrett

Barrett

Gabriel

Ida
Moon

Loosemore
Loosemore

Laubsch

Margolin
White
White

Barrett
Barrett

Loosemore
Loosemore
Margolin

Margolin
Aspinall

Review (and help editing) of 10.104/Chapter 4
(Evaluation and Compilation)
Review of 10.95/Chapter 25 (Printer).
Draft 10.156 (for X3J13 review). Document X3J13/91-103.
Review of 10.156/Chapter 5 (Data and Control Flow)
and Chapter 26 (Glossary).
Review of 10.156/Chapter 2 (Syntax),
Chapter 3 (Evaluation and Compilation),
Chapter 5 (Data and Control Flow), and Chapter 8 (Structures).
Review of 10.156/Chapter 4 (Types and Classes),
and Chapter 10 (Symbols).
Review of 10.156/Chapter 3 (Evaluation and Compilation),
Chapter 6 (Iteration), Chapter 9 (Conditions),
and Chapter 14 (Conses).
(some comments not yet merged)
Review of 10.156/Chapter 1 (Introduction),
Chapter 2 (Syntax), and Chapter 3 (Evaluation and Compilation).
Light review of 10.156/Chapters 1-5.
Review of 10.156/Chapter 3 (Evaluation and Compilation).
(some comments not yet merged)
Review of 10.156/Chapter 10 (Symbols),
Chapter 20 (Files), and Chapter 13 (Characters).
Review of 10.156/Chapter 14 (Conses).
(some comments not yet merged)
Review of 10.156/Chapters 1 (Introduction),
Chapter 2 (Syntax), Chapter 3 (Evaluation and Compilation),
Chapter 4 (Types and Classes), Chapter 5 (Data and Control Flow),
Chapter 7 (Objects), Chapter 11 (Packages),
Chapter 19 (Filenames), and Chapter 21 (Streams).
Review of 10.156/Chapter 18 (Hash Tables).
Review of 10.156/Chapter 6 (Iteration),
Chapter 11 (Packages), Chapter 18 (Hash Tables),
and Chapter 23 (Reader).
Review of 10.156/Chapter 26 (Glossary).
(some comments not yet merged)
Review of 10.156/Chapter 18 (Hash Tables) and Chapter 16 (Strings).
Review of 10.156/Chapter 15 (Arrays) and Chapter 21 (Streams).
(some comments not yet merged)
Review of 10.156/Chapter 16 (Strings),
Chapter 17 (Sequences), and Chapter 25 (Environment).
Review of 10.156/Chapter 21 (Streams) and Chapter 23 (Reader).
(some comments not yet merged)
Review of 10.156/Chapter 2 (Syntax).
Review of 10.156/Chapter 4 (Types and Classes).
Review of 10.156/Chapter 12 (Numbers).

Credits

iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

16-Feb-92
16-Mar-92

16-Feb-92
09-Sep-92
22-Oct-92
23-Oct-92
09-Nov-92
11-Nov-92
17-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
24-Nov-92
23-Nov-92
23-Nov-92
23-Nov-92
24-Nov-92
24-Nov-92
24-Nov-92
23-Nov-92
30-Aug-93
04-Oct-93
05-Oct-93
08-Nov-93
04-Apr-94

05-Apr-94
14-Mar-94
04-Apr-94
05-May-94
10-May-94
12-Aug-94

12-Aug-94

Pitman
Loosemore

Pitman
Samson
Rose, Yen
Staley
Barrett
Moon
Loosemore
Margolin
Withington
Feinberg
Wechsler
Moore
Flanagan
Dalton
Gallagher
Norvig
Robertson
Kawabe
Barrett
Wertheimer
Pitman
Mato Mira
Philpot
Cerys
Pitman
X3J13
Pitman
Dalton

Draft 11.82 (for X3J13 letter ballot). Document X3J13/92-101.

Review of 11.82/Chapter 1, 3, 4,

5,7,8,9, 10,

11, 12, 18, 22, 23, 24, 25, and 26.
Draft 12.24 (for X3 consideration). Document X3J13/92-102.

Public Review Comments (#1)
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments
Public Review Comments

(#2

(

(

(

(

(

(#8a).

(

o
Public Review Comments (

(

(

(

(

(

(

(

(

(

(

c).

Public Review Comments
Public Review Comments

)
)
)
Public Review Comments (#13).
Public Review Comments (#14).
Public Review Comments (#15).
)
)
)
)
)

Public Review Comments (#16

Public Review Comments (#20

Documents X3J13/92-1001 to 92-1003.
. Documents X3J13/92-1101 to 92-1103.
. Documents X3J13/92-1201 to 92-1204.
. Documents X3J13/92-3101 to 92-3110.
. Documents X3J13/92-3201 to 92-3248.
. Documents X3J13/92-1301 to 92-1335.
Documents X3J13/92-1401 to 92-1419.
Documents X3J13/92-1501 to 92-1512.

). Documents X3J13/92-1601 to 92-1603.

Documents X3J13/92-1701 to 92-1703.
Documents X3J13/92-1801 to 92-1802.

. Documents X3J13/92-1901 to 92-1910.
. Documents X3J13/92-2001 to 92-2012.
. Documents X3J13/92-2101 to 92-2103.

Documents X3J13/92-2201 to 92-2208.
Document X3J13/92-2301.
Documents X3J13/92-2401 to 92-2403.

. Documents X3J13/92-2511 to X3J13/92-2531.
Public Review Comments (#17).
Public Review Comments (#18).
Public Review Comments (#19).

Document X3J13/92-2601.
Documents X3J13/92-2701 to 92-2742.
Documents X3J13/92-2801 to 92-2805.

. Document X3J13/92-2901.
Public Review Comments (#21).

Document X3J13/92-3001.

Draft 13.65 (for X3J13 consideration). Document X3J13/93-101.
Minor fixes to Draft 13.65 before sending to X3.
Draft 14.10 (for X3 consideration). Document X3J13/93-102.

“reply to reply to pr comments”.

Boyer, Kaufmann, Moore
Public Review Comments (#1). Document X3J13/94-305.
Public Review Comments (#2). Document X3J13/94-306.
Public Review Comments (#3). Document X3J13,/94-307.
Late commentary. Document X3J13,/94-309.
Editorial-only changes to Draft 14.10 in response to comments.
Draft 15.17 (for X3 consideration). Document X3J13/94-101.
Letter ballot to make specific corrections to Credits.
Drafts 15.17 and 15.17R are identical except for:
Changes to document date and version number.
Disclaimer added to back of cover page.
Changes to this Edit and Review History, page Credits iv.
Changes to names and headings, pages Credits v-vii.
Draft 15.17R (for X3 consideration). Document X3J13/94-101R.

Pitman
Schulenburg
Shepard
X3J13
Pitman
X3J13

Pitman

iv Programming Language—Common Lisp

Document X3J13/94-311.

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The following lists of information are almost certainly incomplete, but it was
felt that it was better to risk publishing incomplete information than to fail to

acknowledge important contributions by the many people and organizations who

have contributed to this effort.

Mention here of any individual or organization does not imply endorsement of

this document by that individual or organization.

Ad Hoc Group Chairs:

Characters
Charter
Compiler Specification

Editorial

Error and Condition System
Graphics & Windows

Tteration Facility
Language Cleanup

Lisps /Lispe
Macros

Object System
Presentation of Standard
Pretty Printer

Public Review

Types & Declarations
Validation

Linden, Thom
Ennis, Susan P.
Haflich, Steven M.
Loosemore, Sandra
Chapman, Kathy
van Roggen, Walter
Pitman, Kent M.
Douglas Rand
Schoen, Eric
White, JonL
Masinter, Larry
Fahlman, Scott
Gabriel, Richard P.
Haflich, Steven M.
Pitman, Kent M.
Wegman, Mark
Bobrow, Daniel G.
Brown, Gary L.
Waters, Richard C.
Ida, Masayuki
Scherlis, William L.
Berman, Richard

Major Administrative Contributions:

Barrett, Kim
Brown, Gary L.
Eiron, Hanoch
Gabriel, Richard P.
Haflich, Steven M.
Ida, Masayuki
Loeffler, David D.
Loosemore, Sandra
Masinter, Larry

Mathis, Robert
Pitman, Kent M.
Steele, Guy L., Jr.
Tyson, Mabry

Van Deusen, Mary
White, JonL
Whittemore, Susan
Woodyatt, Anne
Zubkoff, Jan L.

Credits

A%

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Major Technical Contributions:

Barrett, Kim A.
Bobrow, Daniel G.
Daniels, Andy
DeMichiel, Linda G.
Dussud, Patrick H.
Fahlman, Scott

Moon, David A.
Perdue, Crispin
Pitman, Kent M.
Steele, Guy L., Jr.
Waters, Richard C.
Weinreb, Daniel

Keene, Sonya
Kempf, James
Kerns, Robert W.
Kiczales, Gregor
Loosemore, Sandra
Margolin, Barry

Gabriel, Richard P. Masinter, Larry White, JonL
Ida, Masayuki Mlynarik, Richard

Participating Companies and Organizations:

AT Architects, Inc. Lucid, Inc.

Amoco Production Co. MCC

Aoyama Gakuin University MIT

Apple Computer MITRE Corporation

Boeing Advanced Technology Center MSC

Carnegie-Mellon University
Chestnut Software
Computer Sciences

NASA Ames Research Center
National Bureau of Standards
Nihon Symbolics

Computer & Business Equipment Manufacturing Association (X3 Secretariat)

CONTEL

CSC

DARPA

Digital Equipment Corporation
Encore

Evans & Sutherland

Franz, Inc.

Gigamos

GMD

Gold Hill

Grumman Data Systems Corporation
Harlequin, Ltd.
Hewlett-Packard

Honeywell

IBM

Ibuki

Integrated Inference Machines
International LISP Associates
Johnson Controls, Inc.

LMI

vi Programming Language—Common Lisp

ParcPlace Systems, Inc.
Prime Computer

Siemens

Southern Illinois University
Sperry

SRI International

Sun Microsystems
Symbolics

Tektronix

Texas Instruments

The Aerospace Corporation
Thinking Machines Corporation
Unisys

University of Bath
University of Edinburgh
University of Maryland
University of Utah

US Army

USC/ISI

Xerox

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Individual Participants:

Adler, Annette
Allen, Stanley
Antonisse, Jim
Arbaugh, Bill
Balzer, Bob
Barrett, Kim
Bartley, David H.
Beckerle, Michael
Beiser, Paul
Benson, Eric
Berman, Richard
Bobrow, Daniel G.
Boelk, Mary P.
Brittain, Skona
Brown, Gary L.
Chailloux, Jerome
Chapman, Kathy
Clinger, Will
Coffee, Peter C.
Cugini, John
Curtis, Pavel
Dabrowski, Christopher
Daessler, Klaus
Dalton, Jeff
Daniels, Andy
DeMichiel, Linda G.
Doi, Takumi
Drescher, Gary
Duggan, Jerry
Dussud, Patrick H.
Ennis, Susan P.
Fahlman, Scott
Frayman, Felix
Gabriel, Richard P.
Giansiracusa, Bob
Goldstein, Brad
Gray, David
Greenblatt, Richard
Hadden, George D.

Haflich, Steven M.
Harris, Richard M.
Hendler, Jim
Hewitt, Carl
Hornig, Charles
Ida, Masayuki
Kachurik, Catherine A.
Kahn, Ken

Keene, Sonya
Keller, Shaun
Kempf, James
Kerns, Robert W.
Kiczales, Gregor
Kolb, Dieter
Koschmann, Timothy
Kosinski, Paul
Larson, Aaron
Latto, Andy
Laubsch, Joachim
Layer, Kevin
Linden, Thom
Loeffler, David D.
Loosemore, Sandra
Magataca, Mituhiro
Margolin, Barry
Masinter, Larry
Mathis, Robert
Matthews, David C.
McCarthy, John
Mikelsons, Martin
Mlynarik, Richard
Moon, David A.
Moore, Timothy
Nicoud, Stephen
Nilsson, Jarl
O’Dell, Jim
Ohlander, Ron
Padget, Julian
Palter, Gary

Peck, Jeff
Pellegrino, Bob
Perdue, Crispin
Philipp, Christopher
Pierson, Dan
Pitman, Kent M.
Posner, Dave
Raghavan, B.

Rand, Douglas
Rininger, Jeff
Rosenking, Jeffrey P.
Scherlis, William L.
Shiota, Eiji

Sizer, Andy

Slater, David
Sodan, Angela
Soley, Richard M.
Squires, Stephen L.
St. Clair, Bill
Stanhope, Philip
Steele, Guy L., Jr.
Tucker, Paul

Turba, Thomas
Unietis, Dave

Van Deusen, Mary
van Roggen, Walter
Waldrum, Ellen
Waters, Richard C.
Wechsler, Allan
Wegman, Mark
Weinreb, Daniel
Weyhrauch, Richard
White, JonL
Wieland, Alexis
Withington, P. Tucker
Wright, Whitman
York, Bill
Zacharias, Gail
Zubkoff, Jan L.

Credits

vii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

viii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

1. Introduction

Introduction ix

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

x Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.1 Scope, Purpose, and History

1.1.1 Scope and Purpose

The specification set forth in this document is designed to promote the portability of Common
Lisp programs among a variety of data processing systems. It is a language specification aimed
at an audience of implementors and knowledgeable programmers. It is neither a tutorial nor an
implementation guide.

1.1.2 History

Lisp is a family of languages with a long history. Early key ideas in Lisp were developed by John
McCarthy during the 1956 Dartmouth Summer Research Project on Artificial Intelligence. Mc-
Carthy’s motivation was to develop an algebraic list processing language for artificial intelligence
work. Implementation efforts for early dialects of Lisp were undertaken on the IBM 704, the
IBM 7090, the Digital Equipment Corporation (DEC) PDP-1, the DEC PDP-6, and the PDP-10.
The primary dialect of Lisp between 1960 and 1965 was Lisp 1.5. By the early 1970’s there were
two predominant dialects of Lisp, both arising from these early efforts: MacLisp and Interlisp.
For further information about very early Lisp dialects, see The Anatomy of Lisp or Lisp 1.5
Programmer’s Manual.

MacLisp improved on the Lisp 1.5 notion of special variables and error handling. MacLisp also
introduced the concept of functions that could take a variable number of arguments, macros,
arrays, non-local dynamic exits, fast arithmetic, the first good Lisp compiler, and an emphasis
on execution speed. By the end of the 1970’s, MacLisp was in use at over 50 sites. For further
information about Maclisp, see Maclisp Reference Manual, Revision 0 or The Revised Maclisp
Manual.

Interlisp introduced many ideas into Lisp programming environments and methodology. One of
the Interlisp ideas that influenced Common Lisp was an iteration construct implemented by War-
ren Teitelman that inspired the loop macro used both on the Lisp Machines and in MacLisp, and
now in Common Lisp. For further information about Interlisp, see Interlisp Reference Manual.

Although the first implementations of Lisp were on the IBM 704 and the IBM 7090, later work
focussed on the DEC PDP-6 and, later, PDP-10 computers, the latter being the mainstay of
Lisp and artificial intelligence work at such places as Massachusetts Institute of Technology
(MIT), Stanford University, and Carnegie Mellon University (CMU) from the mid-1960’s through
much of the 1970’s. The PDP-10 computer and its predecessor the PDP-6 computer were, by
design, especially well-suited to Lisp because they had 36-bit words and 18-bit addresses. This
architecture allowed a cons cell to be stored in one word; single instructions could extract the
car and cdr parts. The PDP-6 and PDP-10 had fast, powerful stack instructions that enabled
fast function calling. But the limitations of the PDP-10 were evident by 1973: it supported a
small number of researchers using Lisp, and the small, 18-bit address space (2! = 262,144 words)
limited the size of a single program. One response to the address space problem was the Lisp
Machine, a special-purpose computer designed to run Lisp programs. The other response was to

Introduction 1-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

use general-purpose computers with address spaces larger than 18 bits, such as the DEC VAX
and the S-1 Mark ITA. For further information about S-1 Common Lisp, see “S-1 Common Lisp
Implementation.”

The Lisp machine concept was developed in the late 1960’s. In the early 1970’s, Peter Deutsch,
working with Daniel Bobrow, implemented a Lisp on the Alto, a single-user minicomputer,

using microcode to interpret a byte-code implementation language. Shortly thereafter, Richard
Greenblatt began work on a different hardware and instruction set design at MIT. Although the
Alto was not a total success as a Lisp machine, a dialect of Interlisp known as Interlisp-D became
available on the D-series machines manufactured by Xerox—the Dorado, Dandelion, Dandetiger,
and Dove (or Daybreak). An upward-compatible extension of MacLisp called Lisp Machine Lisp
became available on the early MIT Lisp Machines. Commercial Lisp machines from Xerox, Lisp
Machines (LMI), and Symbolics were on the market by 1981. For further information about Lisp
Machine Lisp, see Lisp Machine Manual.

During the late 1970’s, Lisp Machine Lisp began to expand towards a much fuller language.
Sophisticated lambda lists, setf, multiple values, and structures like those in Common Lisp are
the results of early experimentation with programming styles by the Lisp Machine group. Jonl
White and others migrated these features to MacLisp. Around 1980, Scott Fahlman and others at
CMU began work on a Lisp to run on the Scientific Personal Integrated Computing Environment
(SPICE) workstation. One of the goals of the project was to design a simpler dialect than Lisp
Machine Lisp.

The Macsyma group at MIT began a project during the late 1970’s called the New Implemen-
tation of Lisp (NIL) for the VAX, which was headed by White. One of the stated goals of the
NIL project was to fix many of the historic, but annoying, problems with Lisp while retaining
significant compatibility with MacLisp. At about the same time, a research group at Stanford
University and Lawrence Livermore National Laboratory headed by Richard P. Gabriel began
the design of a Lisp to run on the S-1 Mark ITA supercomputer. S-1 Lisp, never completely
functional, was the test bed for adapting advanced compiler techniques to Lisp implementation.
Eventually the S-1 and NIL groups collaborated. For further information about the NIL project,
see “NIL—A Perspective.”

The first effort towards Lisp standardization was made in 1969, when Anthony Hearn and
Martin Griss at the University of Utah defined Standard Lisp—a subset of Lisp 1.5 and other
dialects—to transport REDUCE, a symbolic algebra system. During the 1970’s, the Utah group
implemented first a retargetable optimizing compiler for Standard Lisp, and then an extended
implementation known as Portable Standard Lisp (PSL). By the mid 1980’s, PSL ran on about
a dozen kinds of computers. For further information about Standard Lisp, see “Standard LISP
Report.”

PSL and Franz Lisp—a MacLisp-like dialect for Unix machines—were the first examples of widely
available Lisp dialects on multiple hardware platforms.

One of the most important developments in Lisp occurred during the second half of the 1970’s:
Scheme. Scheme, designed by Gerald J. Sussman and Guy L. Steele Jr., is a simple dialect of Lisp
whose design brought to Lisp some of the ideas from programming language semantics developed

1-2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in the 1960’s. Sussman was one of the prime innovators behind many other advances in Lisp
technology from the late 1960’s through the 1970’s. The major contributions of Scheme were
lexical scoping, lexical closures, first-class continuations, and simplified syntax (no separation of
value cells and function cells). Some of these contributions made a large impact on the design
of Common Lisp. For further information about Scheme, see IEEE Standard for the Scheme
Programming Language or “Revised® Report on the Algorithmic Language Scheme.”

In the late 1970’s object-oriented programming concepts started to make a strong impact on
Lisp. At MIT, certain ideas from Smalltalk made their way into several widely used program-
ming systems. Flavors, an object-oriented programming system with multiple inheritance, was
developed at MIT for the Lisp machine community by Howard Cannon and others. At Xerox, the
experience with Smalltalk and Knowledge Representation Language (KRL) led to the develop-
ment of Lisp Object Oriented Programming System (LOOPS) and later Common LOOPS. For
further information on Smalltalk, see Smalltalk-80: The Language and its Implementation. For
further information on Flavors, see Flavors: A Non-Hierarchical Approach to Object-Oriented
Programming.

These systems influenced the design of the Common Lisp Object System (CLOS). CLOS was
developed specifically for this standardization effort, and was separately written up in “Common
Lisp Object System Specification.” However, minor details of its design have changed slightly
since that publication, and that paper should not be taken as an authoritative reference to the
semantics of the object system as described in this document.

In 1980 Symbolics and LMI were developing Lisp Machine Lisp; stock-hardware implementation
groups were developing NIL, Franz Lisp, and PSL; Xerox was developing Interlisp; and the SPICE
project at CMU was developing a MacLisp-like dialect of Lisp called SpiceLisp.

In April 1981, after a DARPA-sponsored meeting concerning the splintered Lisp community,
Symbolics, the SPICE project, the NIL project, and the S-1 Lisp project joined together to de-
fine Common Lisp. Initially spearheaded by White and Gabriel, the driving force behind this
grassroots effort was provided by Fahlman, Daniel Weinreb, David Moon, Steele, and Gabriel.
Common Lisp was designed as a description of a family of languages. The primary influences

on Common Lisp were Lisp Machine Lisp, MacLisp, NIL, S-1 Lisp, Spice Lisp, and Scheme.
Common Lisp: The Language is a description of that design. Its semantics were intentionally un-
derspecified in places where it was felt that a tight specification would overly constrain Common
Lisp research and use.

In 1986 X3J13 was formed as a technical working group to produce a draft for an ANSI Common
Lisp standard. Because of the acceptance of Common Lisp, the goals of this group differed from
those of the original designers. These new goals included stricter standardization for portability,
an object-oriented programming system, a condition system, iteration facilities, and a way to
handle large character sets. To accommodate those goals, a new language specification, this
document, was developed.

Introduction 1-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.2 Organization of the Document

This is a reference document, not a tutorial document. Where possible and convenient, the order
of presentation has been chosen so that the more primitive topics precede those that build upon
them; however, linear readability has not been a priority.

This document is divided into chapters by topic. Any given chapter might contain conceptual
material, dictionary entries, or both.

Defined names within the dictionary portion of a chapter are grouped in a way that brings re-
lated topics into physical proximity. Many such groupings were possible, and no deep significance
should be inferred from the particular grouping that was chosen. To see defined names grouped
alphabetically, consult the index. For a complete list of defined names, see Section 1.9 (Symbols
in the COMMON-LISP Package).

In order to compensate for the sometimes-unordered portions of this document, a glossary has
been provided; see Chapter 26 (Glossary). The glossary provides connectivity by providing easy
access to definitions of terms, and in some cases by providing examples or cross references to
additional conceptual material.

For information about notational conventions used in this document, see Section 1.4 (Definitions).
For information about conformance, see Section 1.5 (Conformance).

For information about extensions and subsets, see Section 1.6 (Language Extensions) and Section
1.7 (Language Subsets).

For information about how programs in the language are parsed by the Lisp reader, see Chapter 2
(Syntax).

For information about how programs in the language are compiled and executed, see Chapter 3
(Evaluation and Compilation).

For information about data types, see Chapter 4 (Types and Classes). Not all types and classes
are defined in this chapter; many are defined in chapter corresponding to their topic—for example,
the numeric types are defined in Chapter 12 (Numbers). For a complete list of standardized types,
see Figure 4-2.

For information about general purpose control and data flow, see Chapter 5 (Data and Control
Flow) or Chapter 6 (Iteration).

1-4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.3 Referenced Publications

e The Anatomy of Lisp, John Allen, McGraw-Hill, Inc., 1978.

e The Art of Computer Programming, Volume 3, Donald E. Knuth, Addison-Wesley Company
(Reading, MA), 1973.

o The Art of the Metaobject Protocol, Kiczales et al., MIT Press (Cambridge, MA), 1991.

e “Common Lisp Object System Specification,” D. Bobrow, L. DiMichiel, R.P. Gabriel, S.
Keene, G. Kiczales, D. Moon, SIGPLAN Notices V23, September, 1988.

e Common Lisp: The Language, Guy L. Steele Jr., Digital Press (Burlington, MA), 1984.

e Common Lisp: The Language, Second Edition, Guy L. Steele Jr., Digital Press (Bedford,
MA), 1990.

e Exceptional Situations in Lisp, Kent M. Pitman, Proceedings of the First European Confer-
ence on the Practical Application of LISP (EUROPAL ’90), Churchill College, Cambridge,
England, March 27-29, 1990.

e Flavors: A Non-Hierarchical Approach to Object-Oriented Programming, Howard I. Cannon,
1982.

e [EEFE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Institute of
Electrical and Electronics Engineers, Inc. (New York), 1985.

e [EFEFE Standard for the Scheme Programming Language, IEEE Std 1178-1990, Institute of
Electrical and Electronic Engineers, Inc. (New York), 1991.

e Interlisp Reference Manual, Third Revision, Teitelman, Warren, et al, Xerox Palo Alto
Research Center (Palo Alto, CA), 1978.

e ISO 6937/2, Information processing—Coded character sets for text communication—Part 2:
Latin alphabetic and non-alphabetic graphic characters, ISO, 1983.

e Lisp 1.5 Programmer’s Manual, John McCarthy, MIT Press (Cambridge, MA), August, 1962.

e Lisp Machine Manual, D.L.. Weinreb and D.A. Moon, Artificial Intelligence Laboratory, MIT
(Cambridge, MA), July, 1981.

e Maclisp Reference Manual, Revision 0, David A. Moon, Project MAC (Laboratory for
Computer Science), MIT (Cambridge, MA), March, 1974.

Introduction 1-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e “NIL—A Perspective,” JonL. White, Macsyma User’s Conference, 1979.

e Performance and Evaluation of Lisp Programs, Richard P. Gabriel, MIT Press (Cambridge,
MA), 1985.

e “Principal Values and Branch Cuts in Complex APL,” Paul Penfield Jr., APL 81 Conference
Proceedings, ACM SIGAPL (San Francisco, September 1981), 248-256. Proceedings published
as APL Quote Quad 12, 1 (September 1981).

e The Revised Maclisp Manual, Kent M. Pitman, Technical Report 295, Laboratory for Com-
puter Science, MIT (Cambridge, MA), May 1983.

e “Revised® Report on the Algorithmic Language Scheme,” Jonathan Rees and William Clinger
(editors), SIGPLAN Notices V21, #12, December, 1986.

e “S-1 Common Lisp Implementation,” R.A. Brooks, R.P. Gabriel, and G.L. Steele, Conference
Record of the 1982 ACM Symposium on Lisp and Functional Programming, 108-113, 1982.

o Smalltalk-80: The Language and its Implementation, A. Goldberg and D. Robson, Addison-
Wesley, 1983.

e “Standard LISP Report,” J.B. Marti, A.C. Hearn, M.L. Griss, and C. Griss, SIGPLAN
Notices V14, #10, October, 1979.

o Webster’s Third New International Dictionary the English Language, Unabridged, Merriam
Webster (Springfield, MA), 1986.

e XP: A Common Lisp Pretty Printing System, R.C. Waters, Memo 1102a, Artificial Intelli-
gence Laboratory, MIT (Cambridge, MA), September 1989.

1-6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4 Definitions

This section contains notational conventions and definitions of terms used in this manual.

1.4.1 Notational Conventions

The following notational conventions are used throughout this document.

1.4.1.1 Font Key
Fonts are used in this document to convey information.
name

Denotes a formal term whose meaning is defined in the Glossary. When this font is used,
the Glossary definition takes precedence over normal English usage.

Sometimes a glossary term appears subscripted, as in “whitespaces.” Such a notation
selects one particular Glossary definition out of several, in this case the second. The
subscript notation for Glossary terms is generally used where the context might be
insufficient to disambiguate among the available definitions.

name

Denotes the introduction of a formal term locally to the current text. There is still a
corresponding glossary entry, and is formally equivalent to a use of “name,” but the hope
is that making such uses conspicuous will save the reader a trip to the glossary in some
cases.

name

Denotes a symbol in the COMMON-LISP package. For information about case conventions,
see Section 1.4.1.4.1 (Case in Symbols).

name
Denotes a sample name or piece of code that a programmer might write in Common Lisp.

This font is also used for certain standardized names that are not names of external sym-
bols of the COMMON-LISP package, such as keywords, package names, and loop keywords.

name
Denotes the name of a parameter or value.

In some situations the notation “{(name)” (i.e., the same font, but with surrounding
“angle brackets”) is used instead in order to provide better visual separation from sur-
rounding characters. These “angle brackets” are metasyntactic, and never actually appear
in program input or output.

Introduction 1-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.1.2 Modified BNF Syntax

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of Com-
mon Lisp macro forms and special forms. This section discusses the syntax of BNF expressions.

1.4.1.2.1 Splicing in Modified BNF Syntax

The primary extension used is the following:
[O]

An expression of this form appears whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

O] ... 10

where each O; can be of the form S or of the form S* or of the form S'. The expression [O]
means that a list of the form

(O ...01) 1<

is spliced into the enclosing expression, such that if n % m and 1 < n,m < j, then either
0;, # 0, orO; =0, = Qy, where for some 1 < k < n, Oy, is of the form Q;*. Furthermore,

for each O;, that is of the form Q' that element is required to appear somewhere in the list to
be spliced.

For example, the expression
x[alB*IC]wy

means that at most one A, any number of B’s, and at most one C can occur in any order. It is a
description of any of these:

(x y)
(xBACY)

(x ABBBBBCYy)
(x CBABBBY)

but not any of these:

(xBBAACCY)
(xCBCy

In the first case, both A and C appear too often, and in the second case C appears too often.

1-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The notation [O1 | Oy | ...]" adds the additional restriction that at least one item from among

the possible choices must be used. For example:

a1 c]™»

means that at most one A, any number of B’s, and at most one C can occur in any order, but that
in any case at least one of these options must be selected. It is a description of any of these:

(x
(x
(x
(x

but not any of these:

(x
(x
(x

B y)

BACY)

ABBBBBCYy)
CBABBBY)

y)

BBAACCY)

CBCy

In the first case, no item was used; in the second case, both A and C appear too often; and in the

third case C appears too often.
Also, the expression:
x [AY 1B 1 c]y

can generate exactly these and no others:

(x
(x
(x
(x
(x
(x
(x
(x

1.4.1.2.2 Indirection in Modified BNF Syntax

A

QQ W Www= =

e QFEwWwaQw

Cy
B y)
y)

Cy
Ay
y)

B y)
A y)

An indirection extension is introduced in order to make this new syntax more readable:

10

If O is a non-terminal symbol, the right-hand side of its definition is substituted for the entire
expression | O. For example, the following BNF is equivalent to the BNF in the previous example:

& [lO] »

Introduction 1-—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

O:=A|B*|C

1.4.1.2.3 Additional Uses for Indirect Definitions in Modified BNF Syntax

1.4.1.3

In some cases, an auxiliary definition in the BNF might appear to be unused within the BNF, but
might still be useful elsewhere. For example, consider the following definitions:

case keyform {|normal-clause}* [| otherwise-clause] — {result}*
ccase keyplace {|normal-clause}* — {result}*

ecase keyform {|normal-clause}* — {result}*
normal-clause::=(keys {form}*)
otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Here the term “clause” might appear to be “dead” in that it is not used in the BNF. However,
the purpose of the BNF is not just to guide parsing, but also to define useful terms for reference
in the descriptive text which follows. As such, the term “clause” might appear in text that
follows, as shorthand for “normal-clause or otherwise-clause.”

Special Symbols

The special symbols described here are used as a notational convenience within this document,
and are part of neither the Common Lisp language nor its environment.

N
This indicates evaluation. For example:
(+45) — 9
This means that the result of evaluating the form (+ 4 5) is 9.

If a form returns multiple values, those values might be shown separated by spaces, line
breaks, or commas. For example:

(truncate 7 5)
— 12
(truncate 7 5)
— 1

2
(truncate 7 5)
— 1, 2

Each of the above three examples is equivalent, and specifies that (truncate 7 5) returns
two values, which are 1 and 2.

1-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Some conforming implementations actually type an arrow (or some other indicator)
before showing return values, while others do not.

The notation “%” is used to denote one of several possible alternate results. The example

(char-name #\a)

— NIL
2% WLOWERCASE-a"
2% vSmall-A"

or

25 wpao1n

indicates that nil, "LOWERCASE-a", "Small-A", "LAO1" are among the possible results of
(char-name #\a)—each with equal preference. Unless explicitly specified otherwise, it
should not be assumed that the set of possible results shown is exhaustive. Formally, the
above example is equivalent to

(char-name #\a) — implementation-dependent

but it is intended to provide additional information to illustrate some of the ways in
which it is permitted for implementations to diverge.

not

«not,,

The notation “—" is used to denote a result which is not possible. This might be used,
for example, in order to emphasize a situation where some anticipated misconception
might lead the reader to falsely believe that the result might be possible. For example,

(function-lambda-expression
(funcall #’ (lambda (x) #’(lambda () x)) nil))
— NIL, true, NIL

2 (LAMBDA O X), true, NIL

not

— NIL, false, NIL

not

= (LAMBDA O X), false, NIL

This indicates code equivalence. For example:
(ged x (ged y z)) = (ged (ged x y) z)

This means that the results and observable side-effects of evaluating the form
(ged x (ged y z)) are always the same as the results and observable side-effects of
(gcd (ged x y) z) for any x, y, and z.

Introduction 1-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Common Lisp specifies input and output with respect to a non-interactive stream model.
The specific details of how interactive input and output are mapped onto that non-
interactive model are implementation-defined.

For example, conforming implementations are permitted to differ in issues of how inter-
active input is terminated. For example, the function read terminates when the final
delimiter is typed on a non-interactive stream. In some implementations, an interactive
call to read returns as soon as the final delimiter is typed, even if that delimiter is not a
newline. In other implementations, a final newline is always required. In still other im-
plementations, there might be a command which “activates” a buffer full of input without
the command itself being visible on the program’s input stream.

In the examples in this document, the notation ‘c” precedes lines where interactive input
and output occurs. Within such a scenario, “this notation” notates user input.

For example, the notation

(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))
> 9 16
> 7

— 8

shows an interaction in which “(+ 1 (print (+ (sqrt (read)) (sqrt (read)))))” is a
form to be evaluated, “9 16 7 is interactive input, “7” is interactive output, and “8” is
the value yielded from the evaluation.

The use of this notation is intended to disguise small differences in interactive input and
output behavior between implementations.

Sometimes, the non-interactive stream model calls for a newline. How that newline
character is interactively entered is an implementation-defined detail of the user interface,
but in that case, either the notation “(Newline)” or “—=” might be used.

(progn (format t "“&Who? ") (read-line))
> Who? Fred, Mary, and Sally<—
— "Fred, Mary, and Sally", false

1.4.1.4 Objects with Multiple Notations

Some objects in Common Lisp can be notated in more than one way. In such situations, the
choice of which notation to use is technically arbitrary, but conventions may exist which convey a
“point of view” or “sense of intent.”

1.4.1.4.1 Case in Symbols

While case is significant in the process of interning a symbol, the Lisp reader, by default, at-
tempts to canonicalize the case of a symbol prior to interning; see Section 23.1.2 (Effect of
Readtable Case on the Lisp Reader). As such, case in symbols is not, by default, significant.

1-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Throughout this document, except as explicitly noted otherwise, the case in which a symbol ap-
pears is not significant; that is, HELLO, Hello, hElLo, and hello are all equivalent ways to denote a
symbol whose name is "HELLO".

The characters backslash and vertical-bar are used to explicitly quote the case and other parsing-
related aspects of characters. As such, the notations |hellol and \h\e\1\1l\o are equivalent ways
to refer to a symbol whose name is "hello", and which is distinct from any symbol whose name is
"HELLO".

The symbols that correspond to Common Lisp defined names have uppercase names even though
their names generally appear in lowercase in this document.

1.4.1.4.2 Numbers

Although Common Lisp provides a variety of ways for programs to manipulate the input and
output radix for rational numbers, all numbers in this document are in decimal notation unless
explicitly noted otherwise.

1.4.1.4.3 Use of the Dot Character
The dot appearing by itself in an expression such as
(iteml item2 . tail)
means that tail represents a list of objects at the end of a list. For example,
(ABC. DEF)
is notationally equivalent to:
(ABCDEF)

Although dot is a valid constituent character in a symbol, no standardized symbols contain the
character dot, so a period that follows a reference to a symbol at the end of a sentence in this
document should always be interpreted as a period and never as part of the symbol’s name. For
example, within this document, a sentence such as “This sample sentence refers to the symbol
car.” refers to a symbol whose name is "CAR" (with three letters), and never to a four-letter
symbol "CAR."

1.4.1.4.4 NIL

nil has a variety of meanings. It is a symbol in the COMMON-LISP package with the name "NIL", it is
boolean (and generalized boolean) false, it is the empty list, and it is the name of the empty type
(a subtype of all types).

Within Common Lisp, nil can be notated interchangeably as either NIL or (). By convention, the
choice of notation offers a hint as to which of its many roles it is playing.

Introduction 1-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.1.5

For Evaluation? Notation Typically Implied Role
Yes nil use as a boolean.

Yes ’nil use as a symbol.

Yes 0] use as an empty list

No nil use as a symbol or boolean.
No O use as an empty list.

Figure 1-1. Notations for NIL

Within this document only, nil is also sometimes notated as false to emphasize its role as a
boolean.

For example:

(print ()) ;avoided

(defun three nil 3) ;avoided

’(nil nil) ;1ist of two symbols

(O O) ;1list of empty lists

(defun three () 3) ;Emphasize empty parameter list.
(append) 20) — O ;Emphasize use of empty lists
(not nil) — f{rue ;Emphasize use as Boolean false
(get ’nil ’color) ;Emphasize use as a symbol

A function is sometimes said to “be false” or “be true” in some circumstance. Since no function
object can be the same as nil and all function objects represent true when viewed as booleans, it
would be meaningless to say that the function was literally false and uninteresting to say that it
was literally true. Instead, these phrases are just traditional alternative ways of saying that the
function “returns false” or “returns true,” respectively.

Designators
A designator is an object that denotes another object.

Where a parameter of an operator is described as a designator, the description of the operator
is written in a way that assumes that the value of the parameter is the denoted object; that is,
that the parameter is already of the denoted type. (The specific nature of the object denoted
by a “((type)) designator” or a “designator for a {(type))” can be found in the Glossary entry for
“(type)) designator.”)

For example, “nil” and “the value of *standard-output*” are operationally indistinguishable as
stream designators. Similarly, the symbol foo and the string "FOO" are operationally indistinguish-
able as string designators.

Except as otherwise noted, in a situation where the denoted object might be used multiple times,
it is implementation-dependent whether the object is coerced only once or whether the coercion
occurs each time the object must be used.

1-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.1.6

For example, mapcar receives a function designator as an argument, and its description is written
as if this were simply a function. In fact, it is implementation-dependent whether the function
designator is coerced right away or whether it is carried around internally in the form that it was
given as an argument and re-coerced each time it is needed. In most cases, conforming programs
cannot detect the distinction, but there are some pathological situations (particularly those
involving self-redefining or mutually-redefining functions) which do conform and which can detect
this difference. The following program is a conforming program, but might or might not have
portably correct results, depending on whether its correctness depends on one or the other of the
results:

(defun add-some (x)
(defun add-some (x) (+ x 2))
(+ x 1)) — ADD-SOME
(mapcar ’add-some ’(1 2 3 4))
— (2 34 5)
2 (245 6)

In a few rare situations, there may be a need in a dictionary entry to refer to the object that was
the original designator for a parameter. Since naming the parameter would refer to the denoted
object, the phrase “the ((parameter-name)) designator” can be used to refer to the designator
which was the argument from which the value of ({parameter-name)) was computed.

Nonsense Words

When a word having no pre-attached semantics is required (e.g., in an example), it is common in
the Lisp community to use one of the words “foo,” “bar,” “baz,” and “quux.” For example, in

(defun foo (x) (+ x 1))

the use of the name foo is just a shorthand way of saying “please substitute your favorite name
here.”

These nonsense words have gained such prevalance of usage, that it is commonplace for new-
comers to the community to begin to wonder if there is an attached semantics which they are
overlooking—there is not.

1.4.2 Error Terminology

Situations in which errors might, should, or must be signaled are described in the standard. The
wording used to describe such situations is intended to have precise meaning. The following list is
a glossary of those meanings.

Safe code

This is code processed with the safety optimization at its highest setting (3). safety is
a lexical property of code. The phrase “the function F should signal an error” means
that if F is invoked from code processed with the highest safety optimization, an error is
signaled. It is implementation-dependent whether F or the calling code signals the error.

Introduction 1-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Unsafe code

An

An

This is code processed with lower safety levels.

Unsafe code might do error checking. Implementations are permitted to treat all code as
safe code all the time.

error is signaled

This means that an error is signaled in both safe and unsafe code. Conforming code

may rely on the fact that the error is signaled in both safe and unsafe code. Every
implementation is required to detect the error in both safe and unsafe code. For example,
“an error is signaled if unexport is given a symbol not accessible in the current package.”

If an explicit error type is not specified, the default is error.

error should be signaled

This means that an error is signaled in safe code, and an error might be signaled in
unsafe code. Conforming code may rely on the fact that the error is signaled in safe code.
Every implementation is required to detect the error at least in safe code. When the error
is not signaled, the “consequences are undefined” (see below). For example, “+ should
signal an error of type type-error if any argument is not of {ype number.”

Should be prepared to signal an error

This is similar to “should be signaled” except that it does not imply that ‘extra effort’
has to be taken on the part of an operator to discover an erroneous situation if the
normal action of that operator can be performed successfully with only ‘lazy’ checking.
An implementation is always permitted to signal an error, but even in safe code, it is only
required to signal the error when failing to signal it might lead to incorrect results. In
unsafe code, the consequences are undefined.

For example, defining that “find should be prepared to signal an error of type type-error
if its second argument is not a proper list” does not imply that an error is always sig-
naled. The form

(find ’a ’(a b . ©))

must either signal an error of type type-error in safe code, else return A. In unsafe code,
the consequences are undefined. By contrast,

(find ’d ’(a b . <))

must signal an error of type type-error in safe code. In unsafe code, the consequences are
undefined. Also,

(find ’d ’#1=(a b . #1#))

1-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in safe code might return nil (as an implementation-defined extension), might never
return, or might signal an error of type type-error. In unsafe code, the consequences are
undefined.

Typically, the “should be prepared to signal” terminology is used in type checking
situations where there are efficiency considerations that make it impractical to detect
errors that are not relevant to the correct operation of the operator.

The consequences are unspecified

This means that the consequences are unpredictable but harmless. Implementations are
permitted to specify the consequences of this situation. No conforming code may depend
on the results or effects of this situation, and all conforming code is required to treat the
results and effects of this situation as unpredictable but harmless. For example, “if the
second argument to shared-initialize specifies a name that does not correspond to any
slots accessible in the object, the results are unspecified.”

The consequences are undefined

This means that the consequences are unpredictable. The consequences may range from
harmless to fatal. No conforming code may depend on the results or effects. Conforming
code must treat the consequences as unpredictable. In places where the words “must,”
“must not,” or “may not” are used, then “the consequences are undefined” if the stated
requirement is not met and no specific consequence is explicitly stated. An implementa-
tion is permitted to signal an error in this case.

For example: “Once a name has been declared by defconstant to be constant, any
further assignment or binding of that variable has undefined consequences.”

An error might be signaled

This means that the situation has undefined consequences; however, if an error is sig-
naled, it is of the specified type. For example, “open might signal an error of type
file-error.”

The return values are unspecified

This means that only the number and nature of the return values of a form are not
specified. However, the issue of whether or not any side-effects or transfer of control
occurs is still well-specified.

A program can be well-specified even if it uses a function whose returns values are
unspecified. For example, even if the return values of some function F are unspecified, an
expression such as (length (list (F))) is still well-specified because it does not rely on
any particular aspect of the value or values returned by F.

Implementations may be extended to cover this situation

Introduction 1-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

This means that the situation has undefined consequences; however, a conforming imple-
mentation is free to treat the situation in a more specific way. For example, an implemen-
tation might define that an error is signaled, or that an error should be signaled, or even
that a certain well-defined non-error behavior occurs.

No conforming code may depend on the consequences of such a situation; all conforming
code must treat the consequences of the situation as undefined. Implementations are
required to document how the situation is treated.

For example, “implementations may be extended to define other type specifiers to have a
corresponding class.”

Implementations are free to extend the syntax

This means that in this situation implementations are permitted to define unambiguous
extensions to the syntax of the form being described. No conforming code may depend
on this extension. Implementations are required to document each such extension. All
conforming code is required to treat the syntax as meaningless. The standard might
disallow certain extensions while allowing others. For example, “no implementation is free
to extend the syntax of defclass.”

A warning might be issued

This means that implementations are encouraged to issue a warning if the context
is appropriate (e.g., when compiling). However, a conforming implementation is not
required to issue a warning.

1.4.3 Sections Not Formally Part Of This Standard

Front matter and back matter, such as the “Table of Contents,” “Index,” “Figures,” “Credits,”
and “Appendix” are not considered formally part of this standard, so that we retain the flexibility
needed to update these sections even at the last minute without fear of needing a formal vote to
change those parts of the document. These items are quite short and very useful, however, and it
is not recommended that they be removed even in an abridged version of this document.

Within the concept sections, subsections whose names begin with the words “Note” or “Notes” or
“Example” or “Examples” are provided for illustration purposes only, and are not considered part
of the standard.

An attempt has been made to place these sections last in their parent section, so that they could
be removed without disturbing the contiguous numbering of the surrounding sections in order to
produce a document of smaller size.

Likewise, the “Examples” and “Notes” sections in a dictionary entry are not considered part of
the standard and could be removed if necessary.

Nevertheless, the examples provide important clarifications and consistency checks for the rest of
the material, and such abridging is not recommended unless absolutely unavoidable.

1-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4 Interpreting Dictionary Entries

1.4.4.1

1.4.4.2

1.4.4.3

1.4.4.4

The dictionary entry for each defined name is partitioned into sections. Except as explicitly indi-
cated otherwise below, each section is introduced by a label identifying that section. The omission
of a section implies that the section is either not applicable, or would provide no interesting
information.

This section defines the significance of each potential section in a dictionary entry.

The “Affected By” Section of a Dictionary Entry

For an operator, anything that can affect the side effects of or values returned by the operator.
For a wariable, anything that can affect the value of the variable including functions that bind or
assign it.

The “Arguments” Section of a Dictionary Entry

This information describes the syntax information of entries such as those for declarations and
special ezpressions which are never evaluated as forms, and so do not return values.

The “Arguments and Values” Section of a Dictionary Entry

An English language description of what arguments the operator accepts and what values it
returns, including information about defaults for parameters corresponding to omittable argu-
ments (such as optional parameters and keyword parameters). For special operators and macros,
their arguments are not evaluated unless it is explicitly stated in their descriptions that they are
evaluated.

Except as explicitly specified otherwise, the consequences are undefined if these type restrictions
are violated.

The “Binding Types Affected” Section of a Dictionary Entry

This information alerts the reader to the kinds of bindings that might potentially be affected by
a declaration. Whether in fact any particular such binding is actually affected is dependent on
additional factors as well. See the “Description” section of the declaration in question for details.

Introduction 1-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.5 The “Class Precedence List” Section of a Dictionary Entry

This appears in the dictionary entry for a class, and contains an ordered list of the classes defined
by Common Lisp that must be in the class precedence list of this class.

It is permissible for other (implementation-defined) classes to appear in the implementation’s
class precedence list for the class.

It is permissible for either standard-object or structure-object to appear in the implementa-
tion’s class precedence list; for details, see Section 4.2.2 (Type Relationships).

Except as explicitly indicated otherwise somewhere in this specification, no additional standard-
ized classes may appear in the implementation’s class precedence list.

By definition of the relationship between classes and types, the classes listed in this section are
also supertypes of the type denoted by the class.

1.4.4.6 Dictionary Entries for Type Specifiers

The atomic type specifiers are those defined names listed in Figure 4-2. Such dictionary entries
are of kind “Class,” “Condition Type,” “System Class,” or “Type.” A description of how to
interpret a symbol naming one of these types or classes as an atomic type specifier is found in the
“Description” section of such dictionary entries.

The compound type specifiers are those defined names listed in Figure 4-3. Such dictionary
entries are of kind “Class,” “System Class,” “Type,” or “Type Specifier.” A description of
how to interpret as a compound type specifier a list whose car is such a symbol is found in the
“Compound Type Specifier Kind,” “Compound Type Specifier Syntax,” “Compound Type
Specifier Arguments,” and “Compound Type Specifier Description” sections of such dictionary
entries.

1.4.4.6.1 The “Compound Type Specifier Kind” Section of a Dictionary Entry

An “abbreviating” type specifier is one that describes a subtype for which it is in principle possi-
ble to enumerate the elements, but for which in practice it is impractical to do so.

A “specializing” type specifier is one that describes a subtype by restricting the type of one or
more components of the type, such as element type or complex part type.

A “predicating” type specifier is one that describes a subtype containing only those objects that
satisfy a given predicate.

A “combining” type specifier is one that describes a subtype in a compositional way, using com-
bining operations (such as “and,” “or,” and “not”) on other types.

1-20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.6.2 The “Compound Type Specifier Syntax” Section of a Dictionary Entry

This information about a type describes the syntax of a compound type specifier for that type.

Whether or not the type is acceptable as an atomic type specifier is not represented here; see
Section 1.4.4.6 (Dictionary Entries for Type Specifiers).

1.4.4.6.3 The “Compound Type Specifier Arguments” Section of a Dictionary Entry

This information describes type information for the structures defined in the “Compound Type
Specifier Syntax” section.

1.4.4.6.4 The “Compound Type Specifier Description” Section of a Dictionary Entry

1.4.4.7

1.4.4.8

1.4.4.9

This information describes the meaning of the structures defined in the “Compound Type Speci-
fier Syntax” section.

The “Constant Value” Section of a Dictionary Entry

This information describes the unchanging type and value of a constant variable.

The “Description” Section of a Dictionary Entry

A summary of the operator and all intended aspects of the operator, but does not necessarily
include all the fields referenced below it (“Side Effects,” “Exceptional Situations,” etc.)

The “Examples” Section of a Dictionary Entry

Examples of use of the operator. These examples are not considered part of the standard; see
Section 1.4.3 (Sections Not Formally Part Of This Standard).

1.4.4.10 The “Exceptional Situations” Section of a Dictionary Entry

Three kinds of information may appear here:

e Situations that are detected by the function and formally signaled.
e Situations that are handled by the function.
e Situations that may be detected by the function.

This field does not include conditions that could be signaled by functions passed to and called
by this operator as arguments or through dynamic variables, nor by executing subforms of this
operator if it is a macro or special operator.

Introduction 1-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.11 The “Initial Value” Section of a Dictionary Entry

This information describes the initial value of a dynamic variable. Since this variable might
change, see type restrictions in the “Value Type” section.

1.4.4.12 The “Argument Precedence Order” Section of a Dictionary Entry

This information describes the argument precedence order. If it is omitted, the argument prece-
dence order is the default (left to right).

1.4.4.13 The “Method Signature” Section of a Dictionary Entry

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the standard. A method signature is used to describe the parameters
and parameter specializers for each method. Methods defined for the generic function must be of
the form described by the method signature.

F (x class) (y t) &optional z &key k

This signature indicates that this method on the generic function F has two required parameters:
x, which must be a generalized instance of the class class; and y, which can be any object (i.e., a
generalized instance of the class t). In addition, there is an optional parameter z and a keyword
parameter k. This signature also indicates that this method on F is a primary method and has no
qualifiers.

For each parameter, the argument supplied must be in the intersection of the type specified in

the description of the corresponding generic function and the type given in the signature of some
method (including not only those methods defined in this specification, but also implementation-
defined or user-defined methods in situations where the definition of such methods is permitted).

1.4.4.14 The “Name” Section of a Dictionary Entry

This section introduces the dictionary entry. It is not explicitly labeled. It appears preceded and
followed by a horizontal bar.

In large print at left, the defined name appears; if more than one defined name is to be described
by the entry, all such names are shown separated by commas.

In somewhat smaller italic print at right is an indication of what kind of dictionary entry this is.
Possible values are:

Accessor

This is an accessor function.

Class

This is a class.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Condition Type
This is a subtype of type condition.

Constant Variable

This is a constant variable.

Declaration

This is a declaration identifier.

Function

This is a function.

Local Function

This is a function that is defined only lexically within the scope of some other macro
form.

Local Macro

This is a macro that is defined only lexically within the scope of some other macro form.

Macro

This is a macro.

Restart

This is a restart.
Special Operator

This is a special operator.
Standard Generic Function

This is a standard generic function.

Symbol

This is a symbol that is specially recognized in some particular situation, such as the
syntax of a macro.

System Class

This is like class, but it identifies a class that is potentially a built-in class. (No class is
actually required to be a built-in class.)

Introduction 1-23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Type

This is an atomic type specifier, and depending on information for each particular entry,
may subject to form other type specifiers.

Type Specifier

This is a defined name that is not an atomic type specifier, but that can be used in
constructing valid type specifiers.

Variable

This is a dynamic variable.

1.4.4.15 The “Notes” Section of a Dictionary Entry

Information not found elsewhere in this description which pertains to this operator. Among
other things, this might include cross reference information, code equivalences, stylistic hints,
implementation hints, typical uses. This information is not considered part of the standard; any
conforming implementation or conforming program is permitted to ignore the presence of this
information.

1.4.4.16 The “Pronunciation” Section of a Dictionary Entry

This offers a suggested pronunciation for defined names so that people not in verbal communi-
cation with the original designers can figure out how to pronounce words that are not in normal
English usage. This information is advisory only, and is not considered part of the standard. For
brevity, it is only provided for entries with names that are specific to Common Lisp and would
not be found in Webster’s Third New International Dictionary the English Language, Unabridged.

1.4.4.17 The “See Also” Section of a Dictionary Entry

List of references to other parts of this standard that offer information relevant to this operator.
This list is not part of the standard.

1.4.4.18 The “Side Effects” Section of a Dictionary Entry

Anything that is changed as a result of the evaluation of the form containing this operator.

1.4.4.19 The “Supertypes” Section of a Dictionary Entry

This appears in the dictionary entry for a type, and contains a list of the standardized types that
must be supertypes of this type.

In implementations where there is a corresponding class, the order of the classes in the class
precedence list is consistent with the order presented in this section.

1-24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.20 The “Syntax” Section of a Dictionary Entry

This section describes how to use the defined name in code. The “Syntax” description for a
generic function describes the lambda list of the generic function itself, while the “Method
Signatures” describe the lambda lists of the defined methods. The “Syntax” description for an
ordinary function, a macro, or a special operator describes its parameters.

For example, an operator description might say:
F x y &optional z &key k

This description indicates that the function F has two required parameters, x and y. In addition,
there is an optional parameter z and a keyword parameter k.

For macros and special operators, syntax is given in modified BNF notation; see Section 1.4.1.2
(Modified BNF Syntax). For functions a lambda list is given. In both cases, however, the outer-
most parentheses are omitted, and default value information is omitted.

1.4.4.20.1 Special “Syntax” Notations for Overloaded Operators

If two descriptions exist for the same operation but with different numbers of arguments, then the
extra arguments are to be treated as optional. For example, this pair of lines:

file-position stream — position

file-position stream position-spec — success-p

is operationally equivalent to this line:

file-position stream &optional position-spec — result

and differs only in that it provides on opportunity to introduce different names for parameter and
values for each case. The separated (multi-line) notation is used when an operator is overloaded
in such a way that the parameters are used in different ways depending on how many arguments
are supplied (e.g., for the function /) or the return values are different in the two cases (e.g., for
the function file-position).

1.4.4.20.2 Naming Conventions for Rest Parameters

Within this specification, if the name of a rest parameter is chosen to be a plural noun, use of
that name in parameter font refers to the list to which the rest parameter is bound. Use of the
singular form of that name in parameter font refers to an element of that list.

For example, given a syntax description such as:
F &rest arguments

it is appropriate to refer either to the rest parameter named arguments by name, or to one of its
elements by speaking of “an argument,” “some argument,” “each argument” etc.

Introduction 1-25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.20.3 Requiring Non-Null Rest Parameters in the “Syntax” Section

In some cases it is useful to refer to all arguments equally as a single aggregation using a rest
parameter while at the same time requiring at least one argument. A variety of imperative and
declarative means are available in code for expressing such a restriction, however they generally
do not manifest themselves in a lambda list. For descriptive purposes within this specification,

F &rest arguments™
means the same as
F &rest arguments

but introduces the additional requirement that there be at least one argument.

1.4.4.20.4 Return values in the “Syntax” Section
An evaluation arrow “—” precedes a list of values to be returned. For example:
Fabc —x

indicates that F is an operator that has three required parameters (i.e., a, b, and c) and that
returns one value (i.e., x). If more than one value is returned by an operator, the names of the
values are separated by commas, as in:

Fabc —x vz
1.4.4.20.4.1 No Arguments or Values in the “Syntax” Section

If no arguments are permitted, or no values are returned, a special notation is used to make this
more visually apparent. For example,

F (no arguments) — (no values)
indicates that F is an operator that accepts no arguments and returns no values.
1.4.4.20.4.2 Unconditional Transfer of Control in the “Syntax” Section

Some operators perform an unconditional transfer of control, and so never have any return values.
Such operators are notated using a notation such as the following:

Fabc —

1.4.4.21 The “Valid Context” Section of a Dictionary Entry

This information is used by dictionary entries such as “Declarations” in order to restrict the
context in which the declaration may appear.

A given “Declaration” might appear in a declaration (i.e., a declare expression), a proclamation
(i.e., a declaim or proclaim form), or both.

1-26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.4.4.22 The “Value Type” Section of a Dictionary Entry
This information describes any type restrictions on a dynamic variable.

Except as explicitly specified otherwise, the consequences are undefined if this type restriction is
violated.

Introduction 1-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5 Conformance

1.5.1

1.5.1.1

1.5.1.2

1.5.1.3

1.5.1.4

This standard presents the syntax and semantics to be implemented by a conforming implementa-
tion (and its accompanying documentation). In addition, it imposes requirements on conforming
programs.

Conforming Implementations

A conforming implementation shall adhere to the requirements outlined in this section.

Required Language Features

A conforming implementation shall accept all features (including deprecated features) of the
language specified in this standard, with the meanings defined in this standard.

A conforming implementation shall not require the inclusion of substitute or additional lan-
guage elements in code in order to accomplish a feature of the language that is specified in this
standard.

Documentation of Implementation-Dependent Features

A conforming implementation shall be accompanied by a document that provides a definition of
all implementation-defined aspects of the language defined by this specification.

In addition, a conforming implementation is encouraged (but not required) to document items
in this standard that are identified as implementation-dependent, although in some cases such
documentation might simply identify the item as “undefined.”

Documentation of Extensions

A conforming implementation shall be accompanied by a document that separately describes any
features accepted by the implementation that are not specified in this standard, but that do not
cause any ambiguity or contradiction when added to the language standard. Such extensions shall
be described as being “extensions to Common Lisp as specified by ANSI ((standard number)).”

Treatment of Exceptional Situations

A conforming implementation shall treat exceptional situations in a manner consistent with this
specification.

1.5.1.4.1 Resolution of Apparent Conflicts in Exceptional Situations

If more than one passage in this specification appears to apply to the same situation but in
conflicting ways, the passage that appears to describe the situation in the most specific way
(not necessarily the passage that provides the most constrained kind of error detection) takes
precedence.

1-28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5.1.4.1.1 Examples of Resolution of Apparent Conflicts in Exceptional Situations

1.5.1.5

1.5.2

Suppose that function foo is a member of a set S of functions that operate on numbers. Suppose
that one passage states that an error must be signaled if any function in S is ever given an
argument of 17. Suppose that an apparently conflicting passage states that the consequences are
undefined if foo receives an argument of 17. Then the second passage (the one specifically about
foo) would dominate because the description of the situational context is the most specific, and it
would not be required that foo signal an error on an argument of 17 even though other functions
in the set S would be required to do so.

Conformance Statement

A conforming implementation shall produce a conformance statement as a consequence of using
the implementation, or that statement shall be included in the accompanying documentation. If

the implementation conforms in all respects with this standard, the conformance statement shall
be

“{Implementation)) conforms with the requirements of ANSI ((standard number))”

If the implementation conforms with some but not all of the requirements of this standard, then
the conformance statement shall be

“{Implementation)) conforms with the requirements of ANSI ((standard number)) with the
following exceptions: ((reference to or complete list of the requirements of the standard with
which the implementation does not conform)).”

Conforming Programs
Code conforming with the requirements of this standard shall adhere to the following;:

1. Conforming code shall use only those features of the language syntax and semantics that
are either specified in this standard or defined using the extension mechanisms specified
in the standard.

2. Conforming code may use implementation-dependent features and values, but shall not
rely upon any particular interpretation of these features and values other than those that

are discovered by the execution of code.

3. Conforming code shall not depend on the consequences of undefined or unspecified
situations.

4. Conforming code does not use any constructions that are prohibited by the standard.

5. Conforming code does not depend on extensions included in an implementation.

Introduction 1-29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.5.2.1

Use of Implementation-Defined Language Features

Note that conforming code may rely on particular implementation-defined values or features.
Also note that the requirements for conforming code and conforming implementations do not
require that the results produced by conforming code always be the same when processed by a
conforming implementation. The results may be the same, or they may differ.

Conforming code may run in all conforming implementations, but might have allowable
implementation-defined behavior that makes it non-portable code. For example, the following
are examples of forms that are conforming, but that might return different values in different
implementations:

(evenp most-positive-fixnum) — implementation-dependent
(random) — implementation-dependent

(> lambda-parameters-limit 93) — implementation-dependent
(char-name #\A) — implementation-dependent

1.5.2.1.1 Use of Read-Time Conditionals

1.5.2.2

Use of #+ and #- does not automatically disqualify a program from being conforming. A program
which uses #+ and #- is considered conforming if there is no set of features in which the program
would not be conforming. Of course, conforming programs are not necessarily working programs.
The following program is conforming:

(defun foo ()
#+ACME (acme:initialize-something)
(print ’hello-there))

However, this program might or might not work, depending on whether the presence of the
feature ACME really implies that a function named acme:initialize-something is present in the en-
vironment. In effect, using #+ or #- in a conforming program means that the variable *features*
becomes just one more piece of input data to that program. Like any other data coming into a
program, the programmer is responsible for assuring that the program does not make unwar-
ranted assumptions on the basis of input data.

Character Set for Portable Code

Portable code is written using only standard characters.

1-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.6 Language Extensions

A language extension is any documented implementation-defined behavior of a defined name

in this standard that varies from the behavior described in this standard, or a documented
consequence of a situation that the standard specifies as undefined, unspecified, or extendable
by the implementation. For example, if this standard says that “the results are unspecified,” an
extension would be to specify the results.

If the correct behavior of a program depends on the results provided by an extension, only
implementations with the same extension will execute the program correctly. Note that such a
program might be non-conforming. Also, if this standard says that “an implementation may be
extended,” a conforming, but possibly non-portable, program can be written using an extension.

An implementation can have extensions, provided they do not alter the behavior of conforming
code and provided they are not explicitly prohibited by this standard.

The term “extension” refers only to extensions available upon startup. An implementation is free
to allow or prohibit redefinition of an extension.

The following list contains specific guidance to implementations concerning certain types of
extensions.

Extra return values

An implementation must return exactly the number of return values specified by this
standard unless the standard specifically indicates otherwise.

Unsolicited messages

No output can be produced by a function other than that specified in the standard or due
to the signaling of conditions detected by the function.

Unsolicited output, such as garbage collection notifications and autoload heralds, should
not go directly to the stream that is the value of a stream variable defined in this stan-
dard, but can go indirectly to terminal I/O by using a synonym stream to *terminal-io*.

Progress reports from such functions as load and compile are considered solicited, and
are not covered by this prohibition.

Implementation of macros and special forms

Macros and special operators defined in this standard must not be functions.

Introduction 1-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.7 Language Subsets
The language described in this standard contains no subsets, though subsets are not forbidden.

For a language to be considered a subset, it must have the property that any valid program in
that language has equivalent semantics and will run directly (with no extralingual pre-processing,
and no special compatibility packages) in any conforming implementation of the full language.

A language that conforms to this requirement shall be described as being a “subset of Common
Lisp as specified by ANSI ((standard number)).”

1-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.8 Deprecated Language Features

Deprecated language features are not expected to appear in future Common Lisp standards, but
are required to be implemented for conformance with this standard; see Section 1.5.1.1 (Required
Language Features).

Conforming programs can use deprecated features; however, it is considered good programming
style to avoid them. It is permissible for the compiler to produce style warnings about the use of
such features at compile time, but there should be no such warnings at program execution time.

1.8.1 Deprecated Functions

The functions in Figure 1-2 are deprecated.

assoc-if-not nsubst-if-not require
count-if-not nsubstitute-if-not set

delete-if-not position-if-not subst-if-not
find-if-not provide substitute-if-not
gentemp rassoc-if-not

member-if-not remove-if-not

Figure 1-2. Deprecated Functions

1.8.2 Deprecated Argument Conventions
The ability to pass a numeric argument to gensym has been deprecated.

The :test-not argument to the functions in Figure 1-3 are deprecated.

adjoin nset-difference search

assoc nset-exclusive-or set-difference
count nsublis set-exclusive-or
delete nsubst sublis
delete-duplicates nsubstitute subsetp

find nunion subst
intersection position substitute
member rassoc tree-equal
mismatch remove union
nintersection remove-duplicates

Figure 1-3. Functions with Deprecated :TEST-NOT Arguments

The use of the situation names compile, load, and eval in eval-when is deprecated.

Introduction 1-33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.8.3 Deprecated Variables

The variable *modules* is deprecated.

1.8.4 Deprecated Reader Syntax

The #s reader macro forces keyword names into the KEYWORD package; see Section 2.4.8.13 (Sharp-
sign S). This feature is deprecated; in the future, keyword names will be taken in the package
they are read in, so symbols that are actually in the KEYWORD package should be used if that is
what is desired.

1-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

1.9 Symbols in the COMMON-LISP Package

The figures on the next twelve pages contain a complete enumeration of the 978 external symbols

in the COMMON-LISP package.

&allow-other-keys
&aux

&body
&environment
&key

&optional

&rest

& whole
%

koK
kksk

break-on-signals
compile-file-pathname
compile-file-truename
compile-print
compile-verbose
debug-io
debugger-hook
default-pathname-defaults
error-output®
features
gensym-counter
load-pathname
load-print
load-truename
load-verbose
macroexpand-hook
modules

package

print-array
print-base
print-case
print-circle
print-escape
print-gensym
print-length
print-level
print-lines

print-miser-width
print-pprint-dispatch
print-pretty
print-radix
print-readably
print-right-margin
query-io
random-state
read-base
read-default-float-format
read-eval
read-suppress
readtable
standard-input
standard-output®
terminal-io
trace-output®

4

++

+++

/
//
/17
/=
1+

>=

abort

abs

acons

acos

acosh
add-method

Figure 1-4. Symbols in the COMMON-LISP package (part one of twelve).

Introduction

1-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

adjoin
adjust-array
adjustable-array-p
allocate-instance
alpha-char-p
alphanumericp
and

append

apply

apropos
apropos-list

aref
arithmetic-error

arithmetic-error-operands
arithmetic-error-operation

array
array-dimension
array-dimension-limit
array-dimensions
array-displacement
array-element-type
array-has-fill-pointer-p
array-in-bounds-p
array-rank
array-rank-limit
array-row-major-index
array-total-size
array-total-size-limit
arrayp

ash

asin

asinh

assert

assoc

assoc-if

assoc-if-not

atan

atanh

atom
base-char
base-string
bignum

bit

bit-and
bit-andcl
bit-andc2
bit-eqv
bit-ior
bit-nand
bit-nor
bit-not
bit-orcl
bit-orc2
bit-vector
bit-vector-p
bit-xor
block

boole
boole-1
boole-2
boole-and
boole-andcl
boole-andc2
boole-cl
boole-c2
boole-clr
boole-eqv
boole-ior
boole-nand
boole-nor
boole-orcl
boole-orc2
boole-set
boole-xor
boolean
both-case-p

boundp
break
broadcast-stream

broadcast-stream-streams

built-in-class
butlast

byte
byte-position
byte-size
caaaar
caaadr

caaar

caadar
caaddr

caadr

caar

cadaar
cadadr

cadar

caddar
cadddr
caddr

cadr
call-arguments-limit
call-method
call-next-method
car

case

catch

ccase

cdaaar
cdaadr

cdaar

cdadar
cdaddr

cdadr

cdar

cddaar

1-36 Programming Language—Common Lisp

Figure 1-5. Symbols in the COMMON-LISP package (part two of twelve).

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

cddadr

cddar

cdddar

cddddr

cdddr

cddr

cdr

ceiling
cell-error
cell-error-name
cerror
change-class
char

char-code
char-code-limit
char-downcase
char-equal
char-greaterp
char-int
char-lessp
char-name
char-not-equal

char-not-lessp
char-upcase
char/=
char<
char<=
char=

char>
char>=
character
characterp
check-type
cis

class
class-name
class-of

char-not-greaterp

clear-input
clear-output

close

clrhash

code-char

coerce
compilation-speed
compile

compile-file
compile-file-pathname
compiled-function
compiled-function-p
compiler-macro
compiler-macro-function
complement

complex

complexp
compute-applicable-methods
compute-restarts
concatenate
concatenated-stream
concatenated-stream-streams
cond

condition

conjugate

cons

consp

constantly

constantp

continue

control-error
copy-alist

copy-list
copy-pprint-dispatch
copy-readtable
copy-seq
copy-structure
copy-symbol

copy-tree

cos

cosh

count

count-if

count-if-not
ctypecase

debug

decf

declaim

declaration

declare

decode-float
decode-universal-time
defclass

defconstant
defgeneric
define-compiler-macro
define-condition
define-method-combination
define-modify-macro
define-setf-expander
define-symbol-macro
defmacro

defmethod
defpackage
defparameter

defsetf

defstruct

deftype

defun

defvar

delete
delete-duplicates
delete-file

delete-if

delete-if-not
delete-package

Figure 1-6. Symbols in the COMMON-LISP package (part three of twelve).

Introduction 1-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

denominator
deposit-field

describe
describe-object
destructuring-bind
digit-char

digit-char-p

directory
directory-namestring
disassemble
division-by-zero

do

do*

do-all-symbols
do-external-symbols
do-symbols
documentation

dolist

dotimes

double-float
double-float-epsilon
double-float-negative-epsilon
dpb

dribble

dynamic-extent

ecase

echo-stream
echo-stream-input-stream
echo-stream-output-stream
ed

eighth

elt
encode-universal-time
end-of-file

endp
enough-namestring
ensure-directories-exist
ensure-generic-function

eq
eql

equal

equalp

error

etypecase

eval

eval-when
evenp

every

exp

export

expt
extended-char
fboundp

fceiling
fdefinition

flloor

fifth

file-author
file-error
file-error-pathname
file-length
file-namestring
file-position
file-stream
file-string-length
file-write-date
fill

fill-pointer

find
find-all-symbols
find-class

find-if
find-if-not
find-method
find-package
find-restart

1-38 Programming Language—Common Lisp

Figure 1-7. Symbols in the COMMON-LISP package (part four of twelve).

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

find-symbol
finish-output

first

fixnum

flet

float

float-digits
float-precision
float-radix

float-sign
floating-point-inexact
floating-point-invalid-operation
floating-point-overflow
floating-point-underflow
floatp

floor

fmakunbound
force-output

format

formatter

fourth

fresh-line

fround

ftruncate

ftype

funcall

function
function-keywords
function-lambda-expression
functionp

ged

generic-function

gensym

gentemp

get

get-decoded-time
get-dispatch-macro-character
get-internal-real-time

get-internal-run-time
get-macro-character
get-output-stream-string
get-properties
get-setf-expansion
get-universal-time
getf

gethash

go

graphic-char-p
handler-bind
handler-case
hash-table
hash-table-count
hash-table-p
hash-table-rehash-size
hash-table-rehash-threshold
hash-table-size
hash-table-test
host-namestring
identity

if

ignorable

ignore

ignore-errors
imagpart

import

in-package

incf
initialize-instance
inline

input-stream-p
inspect

integer
integer-decode-float
integer-length
integerp
interactive-stream-p

Figure 1-8. Symbols in the COMMON-LISP package (part five of twelve).

Introduction

1-39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

intern lisp-implementation-type
internal-time-units-per-second lisp-implementation-version
intersection list

invalid-method-error list*

invoke-debugger list-all-packages
invoke-restart list-length
invoke-restart-interactively listen

isqrt listp

keyword load

keywordp load-logical-pathname-translations
labels load-time-value

lambda locally
lambda-list-keywords log
lambda-parameters-limit logand

last logandcl

lem logandc2

1db logbitp

Idb-test logcount

1diff logeqv
least-negative-double-float logical-pathname
least-negative-long-float logical-pathname-translations
least-negative-normalized-double-float logior
least-negative-normalized-long-float lognand
least-negative-normalized-short-float lognor
least-negative-normalized-single-float lognot
least-negative-short-float logorcl
least-negative-single-float logorc2
least-positive-double-float logtest
least-positive-long-float logxor
least-positive-normalized-double-float long-float
least-positive-normalized-long-float long-float-epsilon
least-positive-normalized-short-float long-float-negative-epsilon
least-positive-normalized-single-float long-site-name
least-positive-short-float loop
least-positive-single-float loop-finish

length lower-case-p

let machine-instance

let* machine-type

Figure 1-9. Symbols in the COMMON-LISP package (part six of twelve).

1-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

machine-version
macro-function
macroexpand
macroexpand-1

macrolet

make-array
make-broadcast-stream
make-concatenated-stream
make-condition
make-dispatch-macro-character
make-echo-stream
make-hash-table
make-instance
make-instances-obsolete
make-list

make-load-form
make-load-form-saving-slots
make-method
make-package
make-pathname
make-random-state
make-sequence
make-string
make-string-input-stream
make-string-output-stream
make-symbol
make-synonym-stream
make-two-way-stream
makunbound

map

map-into

mapc

mapcan

mapcar

mapcon

maphash

mapl

maplist

mask-field

max

member

member-if

member-if-not

merge

merge-pathnames
method
method-combination
method-combination-error
method-qualifiers

min

minusp

mismatch

mod
most-negative-double-float
most-negative-fixnum
most-negative-long-float
most-negative-short-float
most-negative-single-float
most-positive-double-float
most-positive-fixnum
most-positive-long-float
most-positive-short-float
most-positive-single-float
muffle-warning
multiple-value-bind
multiple-value-call
multiple-value-list
multiple-value-progl
multiple-value-setq
multiple-values-limit
name-char

namestring

nbutlast

nconc

next-method-p

nil

Figure 1-10. Symbols in the COMMON-LISP package (part seven of twelve).

Introduction

1-41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nintersection
ninth
no-applicable-method
no-next-method
not

notany

notevery
notinline

nreconc

nreverse
nset-difference
nset-exclusive-or
nstring-capitalize
nstring-downcase
nstring-upcase
nsublis

nsubst

nsubst-if
nsubst-if-not
nsubstitute
nsubstitute-if
nsubstitute-if-not
nth

nth-value

nthedr

null

number

numberp
numerator
nunion

oddp

open
open-stream-p
optimize

or

otherwise
output-stream-p
package

package-error
package-error-package
package-name
package-nicknames
package-shadowing-symbols
package-use-list
package-used-by-list
packagep

pairlis

parse-error
parse-integer
parse-namestring
pathname
pathname-device
pathname-directory
pathname-host
pathname-match-p
pathname-name
pathname-type
pathname-version
pathnamep
peek-char

phase

pi

plusp

pop

position

position-if
position-if-not
pprint
pprint-dispatch
pprint-exit-if-list-exhausted
pprint-fill
pprint-indent
pprint-linear
pprint-logical-block
pprint-newline
pprint-pop

1-42 Programming Language—Common Lisp

Figure 1-11. Symbols in the COMMON-LISP package (part eight of twelve).

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pprint-tab
pprint-tabular
prinl
prinl-to-string
princ
princ-to-string
print

print-object

probe-file
proclaim
prog

prog*

progl

prog2

progn
programe-error
progv
provide

psetf

psetq

push
pushnew
quote
random
random-state
random-state-p
rassoc
rassoc-if
rassoc-if-not
ratio

rational
rationalize
rationalp
read
read-byte

print-not-readable
print-not-readable-object

print-unreadable-object

read-char
read-char-no-hang
read-delimited-list
read-from-string
read-line
read-preserving-whitespace
read-sequence
reader-error
readtable
readtable-case
readtablep

real

realp

realpart

reduce
reinitialize-instance
rem

remf

remhash

remove
remove-duplicates
remove-if
remove-if-not
remove-method
remprop
rename-file
rename-package
replace

require

rest

restart
restart-bind
restart-case
restart-name
return
return-from
revappend

reverse

Figure 1-12. Symbols in the COMMON-LISP package (part nine of twelve).

Introduction

1-43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

room
rotatef

round
row-major-aref
rplaca

rplacd

safety

satisfies

sbit

scale-float

schar

search

second

sequence
serious-condition

set

set-difference
set-dispatch-macro-character
set-exclusive-or
set-macro-character
set-pprint-dispatch
set-syntax-from-char
setf

setq

seventh

shadow
shadowing-import
shared-initialize
shiftf

short-float
short-float-epsilon
short-float-negative-epsilon
short-site-name
signal

signed-byte

signum

simple-array
simple-base-string

simple-bit-vector
simple-bit-vector-p
simple-condition
simple-condition-format-arguments
simple-condition-format-control
simple-error
simple-string
simple-string-p
simple-type-error
simple-vector
simple-vector-p
simple-warning

sin

single-float
single-float-epsilon
single-float-negative-epsilon
sinh

sixth

sleep

slot-boundp
slot-exists-p
slot-makunbound
slot-missing
slot-unbound
slot-value
software-type
software-version
some

sort

space

special
special-operator-p
speed

sqrt

stable-sort
standard
standard-char
standard-char-p

Figure 1-13. Symbols in the COMMON-LISP package (part ten of twelve).

1-44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-class
standard-generic-function
standard-method
standard-object
step
storage-condition
store-value

stream
stream-element-type
stream-error
stream-error-stream
stream-external-format
streamp

string
string-capitalize
string-downcase
string-equal
string-greaterp
string-left-trim
string-lessp
string-not-equal
string-not-greaterp
string-not-lessp
string-right-trim
string-stream
string-trim
string-upcase
string/=

string<

string<=

string—=

string>

string>=

stringp

structure
structure-class
structure-object
style-warning

sublis

subseq

subsetp

subst

subst-if
subst-if-not
substitute
substitute-if
substitute-if-not
subtypep

svref

sxhash

symbol
symbol-function
symbol-macrolet
symbol-name
symbol-package
symbol-plist
symbol-value
symbolp
synonym-stream
synonym-stream-symbol
t

tagbody

tailp

tan

tanh

tenth

terpri

the

third

throw

time

trace
translate-logical-pathname
translate-pathname
tree-equal
truename

Figure 1-14. Symbols in the COMMON-LISP package (part eleven of twelve).

Introduction

1-45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

truncate

two-way-stream
two-way-stream-input-stream
two-way-stream-output-stream
type

type-error

type-error-datum
type-error-expected-type
type-of

typecase

typep

unbound-slot
unbound-slot-instance
unbound-variable
undefined-function

unexport

unintern

union

unless

unread-char

unsigned-byte

untrace

unuse-package
unwind-protect
update-instance-for-different-class
update-instance-for-redefined-class
upgraded-array-element-type
upgraded-complex-part-type
upper-case-p

use-package

use-value
user-homedir-pathname
values

values-list

variable

vector

vector-pop
vector-push
vector-push-extend
vectorp

warn

warning

when

wild-pathname-p
with-accessors
with-compilation-unit
with-condition-restarts
with-hash-table-iterator
with-input-from-string
with-open-file
with-open-stream
with-output-to-string
with-package-iterator
with-simple-restart
with-slots
with-standard-io-syntax
write

write-byte

write-char

write-line
write-sequence
write-string
write-to-string
y-or-n-p

yes-or-no-p

zerop

1-46 Programming Language—Common Lisp

Figure 1-15. Symbols in the COMMON-LISP package (part twelve of twelve).

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

2. Syntax

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Syntax iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1 Character Syntax

The Lisp reader takes characters from a stream, interprets them as a printed representation of an
object, constructs that object, and returns it.

The syntax described by this chapter is called the standard syntax. Operations are provided by
Common Lisp so that various aspects of the syntax information represented by a readtable can be
modified under program control; see Chapter 23 (Reader). Except as explicitly stated otherwise,
the syntax used throughout this document is standard syntax.

2.1.1 Readtables

2.1.1.1

2.1.1.2

Syntax information for use by the Lisp reader is embodied in an object called a readtable.
Among other things, the readtable contains the association between characters and syntax types.

Figure 2-1 lists some defined names that are applicable to readtables.

readtable readtable-case
copy-readtable readtablep
get-dispatch-macro-character set-dispatch-macro-character
get-macro-character set-macro-character
make-dispatch-macro-character set-syntax-from-char

Figure 2—1. Readtable defined names

The Current Readtable

Several readtables describing different syntaxes can exist, but at any given time only one, called
the current readtable, affects the way in which expressionss are parsed into objects by the Lisp
reader. The current readtable in a given dynamic environment is the value of *readtable* in that
environment. To make a different readtable become the current readtable, *readtable* can be
assigned or bound.

The Standard Readtable

The standard readtable conforms to standard syntax. The consequences are undefined if
an attempt is made to modify the standard readtable. To achieve the effect of altering or ex-
tending standard syntazx, a copy of the standard readtable can be created; see the function
copy-readtable.

The readtable case of the standard readtable is :upcase.

Syntax 2-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.1.3 The Initial Readtable

The initial readtable is the readtable that is the current readtable at the time when the Lisp
image starts. At that time, it conforms to standard syntax. The initial readtable is distinct from
the standard readtable. It is permissible for a conforming program to modify the initial readtable.

2.1.2 Variables that affect the Lisp Reader

The Lisp reader is influenced not only by the current readtable, but also by various dynamic
variables. Figure 2-2 lists the variables that influence the behavior of the Lisp reader.

package *read-default-float-format* *readtable*
read-base *read-suppress*

Figure 2—2. Variables that influence the Lisp reader.

2.1.3 Standard Characters

All implementations must support a character repertoire called standard-char; characters that
are members of that repertoire are called standard characters.

The standard-char repertoire consists of the non-graphic character newline, the graphic charac-
ter space, and the following additional ninety-four graphic characters or their equivalents:

2—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Graphic ID Glyph Description Graphic ID Glyph Description
LAO1 a small a LNO1 n small n
LAO02 A capital A LNO02 N capital N
LB01 b small b LOO01 o small o
LB02 B capital B LO02 0 capital O
LCo1 c small ¢ LPO1 P small p
LCO02 C capital C LPO2 P capital P
LDO01 d small d LQO1 q small q
LDO02 D capital D LQO02 Q capital Q
LEO1 e small e LRO1 T small r
LE02 E capital E LRO0O2 R capital R
LFO01 f small f LS01 s small s
LF02 F capital F LS02 S capital S
LGO1 g small g LTO1 t small t
LGO02 G capital G LTO02 T capital T
LHO1 h small h LUO1 u small u
LHO02 H capital H LU02 U capital U
LI01 i small i LVo1 v small v
LI02 I capital T LV02 v capital V
LJo1 j small j Lwo1 W small w
LJO2 J capital J LWO02 W capital W
LKO1 k small k LX01 x small x
LKO02 K capital K LX02 X capital X
LLO1 1 small 1 LYO1 y small y
LL02 L capital L LYO02 Y capital Y
LMO1 m small m LZo1 z small z
LMO02 M capital M LZ02 z capital Z

Figure 2—3. Standard Character Subrepertoire (Part 1 of 3: Latin Characters)

Graphic ID Glyph Description Graphic ID Glyph Description
NDO1 1 digit 1 NDO06 6 digit 6
NDO02 2 digit 2 NDO7 7 digit 7
NDO03 3 digit 3 NDO08 8 digit 8
NDO04 4 digit 4 NDO09 9 digit 9
NDO05 5 digit 5 ND10 0 digit 0

Figure 2—4. Standard Character Subrepertoire (Part 2 of 3: Numeric Characters)

Syntax 2-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Graphic ID Glyph Description

SP02 ! exclamation mark

SC03 $ dollar sign

SP04 " quotation mark, or double quote
SP05) apostrophe, or [single] quote
SP06 (left parenthesis, or open parenthesis
SPO7) right parenthesis, or close parenthesis
SPO08 , comma

SP09 _ low line, or underscore

SP10 - hyphen, or minus [sign]

SP11 . full stop, period, or dot

SP12 / solidus, or slash

SP13 : colon

SP14 ; semicolon

SP15 ? question mark

SA01 + plus [sign]

SA03 < less-than [sign]

SA04 = equals [sign]

SA05 > greater-than [sign]

SMO01 # number sign, or sharp[sign]
SM02 h percent [sign]

SMO03 & ampersand

SMO04 * asterisk, or star

SMO05 e commercial at, or at-sign

SMO06 [left [square] bracket

SMO07 \ reverse solidus, or backslash
SMO08] right [square] bracket

SM11 { left curly bracket, or left brace
SM13 | vertical bar

SM14 } right curly bracket, or right brace
SD13 ¢ grave accent, or backquote
SD15 A circumflex accent

SD19 ~ tilde

Figure 2—5. Standard Character Subrepertoire (Part 3 of 3: Special Characters)

The graphic IDs are not used within Common Lisp, but are provided for cross reference purposes
with ISO 6937/2. Note that the first letter of the graphic ID categorizes the character as follows:
L—Latin, N—Numeric, S—Special.

2.1.4 Character Syntax Types

The Lisp reader constructs an object from the input text by interpreting each character according
to its syntax type. The Lisp reader cannot accept as input everything that the Lisp printer

2—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

produces, and the Lisp reader has features that are not used by the Lisp printer. The Lisp reader
can be used as a lexical analyzer for a more general user-written parser.

When the Lisp reader is invoked, it reads a single character from the input stream and dispatches
according to the syntax type of that character. Every character that can appear in the input
stream is of one of the syntaz types shown in Figure 2—6.

constituent macro character single escape
invalid multiple escape whitespaces

Figure 2—6. Possible Character Syntax Types

The syntaz type of a character in a readtable determines how that character is interpreted by the
Lisp reader while that readtable is the current readtable. At any given time, every character has
exactly one syntaz type.

Figure 27 lists the syntax type of each character in standard syntazx.

character syntax type character syntax type
Backspace constituent 0-9 constituent
Tab whitespaces : constituent
Newline whitespaces ; terminating macro char
Linefeed whitespaces < constituent
Page whitespaces = constituent
Return whitespaces > constituent
Space whitespaces ? constituent™

! constituent™® (¢ constituent

" terminating macro char A-7Z constituent

non-terminating macro char [constituent™

$ constituent \ single escape
% constituent] constituent™

& constituent A constituent

’ terminating macro char _ constituent

(terminating macro char ‘ terminating macro char
) terminating macro char a—z constituent

* constituent { constituent™

+ constituent | multiple escape
, terminating macro char } constituent™

- constituent - constituent

. constituent Rubout constituent

/ constituent

Figure 2—7. Character Syntax Types in Standard Syntax

Syntax 2-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.1

2.1.4.2

The characters marked with an asterisk (*) are initially constituents, but they are not used in any
standard Common Lisp notations. These characters are explicitly reserved to the programmer. ~
is not used in Common Lisp, and reserved to implementors. $ and % are alphabeticy characters,
but are not used in the names of any standard Common Lisp defined names.

Whitespaces characters serve as separators but are otherwise ignored. Constituent and escape
characters are accumulated to make a token, which is then interpreted as a number or symbol.
Macro characters trigger the invocation of functions (possibly user-supplied) that can perform
arbitrary parsing actions. Macro characters are divided into two kinds, terminating and non-
terminating, depending on whether or not they terminate a token. The following are descriptions
of each kind of syntax type.

Constituent Characters

Constituent characters are used in tokens. A token is a representation of a number or a symbol.
Examples of constituent characters are letters and digits.

Letters in symbol names are sometimes converted to letters in the opposite case when the name
is read; see Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). Case conversion can be
suppressed by the use of single escape or multiple escape characters.

Constituent Traits

Every character has one or more constituent traits that define how the character is to be inter-
preted by the Lisp reader when the character is a constituent character. These constituent traits
are alphabeticy, digit, package marker, plus sign, minus sign, dot, decimal point, ratio marker,
exponent marker, and invalid. Figure 2-8 shows the constituent traits of the standard characters
and of certain semi-standard characters; no mechanism is provided for changing the constituent
trait of a character. Any character with the alphadigit constituent trait in that figure is a digit
if the current input base is greater than that character’s digit value, otherwise the character is
alphabetico. Any character quoted by a single escape is treated as an alphabeticy constituent,
regardless of its normal syntax.

2—6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

constituent traits constituent traits
character character
Backspace invalid { alphabeticy
Tab invalid* } alphabetico
Newline invalid* + alphabetico, plus sign
Linefeed mvalid* - alphabetico, minus sign
Page invalid* . alphabetico, dot, decimal point
Return invalid* / alphabeticy, ratio marker
Space mvalid* A a alphadigit
! alphabeticy B, b alphadigit
" alphabetico® C,c alphadigit
alphabetico* D, d alphadigit, double-float exponent marker
$ alphabeticy E e alphadigit, float exponent marker
% alphabeticy F, f alphadigit, single-float exponent marker
& alphabetico G, g alphadigit
’ alphabetico* H, h alphadigit
(alphabetico® Ii alphadigit
) alphabetico* J,j alphadigit
* alphabeticy K, k alphadigit
, alphabetico® L,1 alphadigit, long-float exponent marker
0-9 alphadigit M, m alphadigit
: package marker N, n alphadigit
; alphabeticy® 0,0 alphadigit
< alphabeticy P, p alphadigit
= alphabeticy Q, q alphadigit
> alphabetico R, r alphadigit
? alphabetico S,s alphadigit, short-float exponent marker
¢ alphabeticy T, t alphadigit
[alphabetico U, u alphadigit
\ alphabeticy™ V,v alphadigit
] alphabeticy W, w alphadigit
A alphabetico X, x alphadigit
_ alphabeticy Y,y alphadigit
‘ alphabetico* 7,z alphadigit
alphabeticy® Rubout invalid
- alphabetico

Figure 2—8. Constituent Traits of Standard Characters and Semi-Standard Characters

The interpretations in this table apply only to characters whose syntaz type is constituent.
Entries marked with an asterisk (*) are normally shadoweds because the indicated characters are
of syntax type whitespaces, macro character, single escape, or multiple escape; these constituent
traits apply to them only if their syntax types are changed to constituent.

Syntax 2-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.3

2.1.4.4

Invalid Characters

Characters with the constituent trait invalid cannot ever appear in a token except under the
control of a single escape character. If an invalid character is encountered while an object is
being read, an error of type reader-error is signaled. If an invalid character is preceded by a
single escape character, it is treated as an alphabetico constituent instead.

Macro Characters

When the Lisp reader encounters a macro character on an input stream, special parsing of
subsequent characters on the input stream is performed.

A macro character has an associated function called a reader macro function that imple-

ments its specialized parsing behavior. An association of this kind can be established or mod-
ified under control of a conforming program by using the functions set-macro-character and
set-dispatch-macro-character.

Upon encountering a macro character, the Lisp reader calls its reader macro function, which
parses one specially formatted object from the input stream. The function either returns the
parsed object, or else it returns no values to indicate that the characters scanned by the function
are being ignored (e.g., in the case of a comment). Examples of macro characters are backquote,
single-quote, left-parenthesis, and right-parenthesis.

A macro character is either terminating or non-terminating. The difference between terminating
and non-terminating macro characters lies in what happens when such characters occur in the
middle of a token. If a non-terminating macro character occurs in the middle of a token,

the function associated with the non-terminating macro character is not called, and the non-
terminating macro character does not terminate the token’s name; it becomes part of the name
as if the macro character were really a constituent character. A terminating macro character
terminates any token, and its associated reader macro function is called no matter where the
character appears. The only non-terminating macro character in standard syntax is sharpsign.

If a character is a dispatching macro character Cq, its reader macro function is a function sup-
plied by the implementation. This function reads decimal digit characters until a non-digit C5 is
read. If any digits were read, they are converted into a corresponding integer infix parameter P;
otherwise, the infix parameter P is nil. The terminating non-digit Cs is a character (sometimes
called a “sub-character” to emphasize its subordinate role in the dispatching) that is looked up

in the dispatch table associated with the dispatching macro character C1. The reader macro
function associated with the sub-character C5 is invoked with three arguments: the stream, the
sub-character C5, and the infix parameter P. For more information about dispatch characters, see
the function set-dispatch-macro-character.

For information about the macro characters that are available in standard syntax, see Section 2.4
(Standard Macro Characters).

2—8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.5 Multiple Escape Characters

A pair of multiple escape characters is used to indicate that an enclosed sequence of characters,
including possible macro characters and whitespaces characters, are to be treated as alphabeticsy
characters with case preserved. Any single escape and multiple escape characters that are to
appear in the sequence must be preceded by a single escape character.

Vertical-bar is a multiple escape character in standard syntaz.

2.1.4.5.1 Examples of Multiple Escape Characters

;; The following examples assume the readtable case of *readtablex
;; and *print-case* are both :upcase.

(eq ’abc ’ABC) — true

(eq ’abc ’|ABC|) — true

(eq ’abc ’alBlc) — true

(eq ’abc ’labcl) — false

2.1.4.6 Single Escape Character

A single escape is used to indicate that the next character is to be treated as an alphabetics
character with its case preserved, no matter what the character is or which constituent traits it
has.

Backslash is a single escape character in standard syntaz.

2.1.4.6.1 Examples of Single Escape Characters

;5 The following examples assume the readtable case of *readtablex
;; and *print-case* are both :upcase.

(eq ’abc ’\A\B\C) — f{rue

(eq ’abc ’a\Bc) — true

(eq ’abc ’\ABC) — f{rue

(eq ’abc ’\abc) — false

2.1.4.7 Whitespace Characters
Whitespaces characters are used to separate tokens.

Space and newline are whitespaces characters in standard syntaz.

Syntax 2-9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.1.4.7.1 Examples of Whitespace Characters

(length ’(this-that)) — 1
(length ’(this - that)) — 3

(length ’(a
b)) — 2
(+ 34) — 34

(+34) —7

2-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.2 Reader Algorithm

This section describes the algorithm used by the Lisp reader to parse objects from an input
character stream, including how the Lisp reader processes macro characters.

When dealing with tokens, the reader’s basic function is to distinguish representations of symbols
from those of numbers. When a token is accumulated, it is assumed to represent a number if

it satisfies the syntax for numbers listed in Figure 2-9. If it does not represent a number, it is
then assumed to be a potential number if it satisfies the rules governing the syntax for a potential
number. If a valid token is neither a representation of a number nor a potential number, it
represents a symbol.

The algorithm performed by the Lisp reader is as follows:

1.

If at end of file, end-of-file processing is performed as specified in read. Otherwise, one
character, x, is read from the input stream, and dispatched according to the syntaz type of x
to one of steps 2 to 7.

If x is an inwvalid character, an error of type reader-error is signaled.
If x is a whitespaces character, then it is discarded and step 1 is re-entered.

If x is a terminating or non-terminating macro character then its associated reader macro
function is called with two arguments, the input stream and x.

The reader macro function may read characters from the input stream; if it does, it will see
those characters following the macro character. The Lisp reader may be invoked recursively
from the reader macro function.

The reader macro function must not have any side effects other than on the input stream;
because of backtracking and restarting of the read operation, front ends to the Lisp reader
(e.g., “editors” and “rubout handlers”) may cause the reader macro function to be called
repeatedly during the reading of a single expression in which x only appears once.

The reader macro function may return zero values or one value. If one value is returned, then
that value is returned as the result of the read operation; the algorithm is done. If zero values
are returned, then step 1 is re-entered.

If x is a single escape character then the next character, y, is read, or an error of type
end-of-file is signaled if at the end of file. y is treated as if it is a constituent whose only
constituent trait is alphabeticy. y is used to begin a token, and step 8 is entered.

If x is a multiple escape character then a token (initially containing no characters) is begun
and step 9 is entered.

If x is a constituent character, then it begins a token. After the token is read in, it will be
interpreted either as a Lisp object or as being of invalid syntax. If the token represents an

Syntax 2-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

object, that object is returned as the result of the read operation. If the token is of invalid
syntax, an error is signaled. If x is a character with case, it might be replaced with the
corresponding character of the opposite case, depending on the readtable case of the current
readtable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp Reader). X is
used to begin a token, and step 8 is entered.

8. At this point a token is being accumulated, and an even number of multiple escape characters
have been encountered. If at end of file, step 10 is entered. Otherwise, a character, y, is read,
and one of the following actions is performed according to its syntax type:

e If y is a constituent or non-terminating macro character:

— If y is a character with case, it might be replaced with the corresponding
character of the opposite case, depending on the readtable case of the current
readtable, as outlined in Section 23.1.2 (Effect of Readtable Case on the Lisp
Reader).

— Y is appended to the token being built.

— Step 8 is repeated.

e If yis a single escape character, then the next character, z, is read, or an error of
type end-of-file is signaled if at end of file. Z is treated as if it is a constituent whose
only constituent trait is alphabetics. Z is appended to the token being built, and step
8 is repeated.

o If y is a multiple escape character, then step 9 is entered.
e If y is an inwvalid character, an error of type reader-error is signaled.

o If y is a terminating macro character, then it terminates the token. First the charac-
ter y is unread (see unread-char), and then step 10 is entered.

o If y is a whitespaces character, then it terminates the token. First the character y is
unread if appropriate (see read-preserving-whitespace), and then step 10 is entered.

9. At this point a token is being accumulated, and an odd number of multiple escape characters
have been encountered. If at end of file, an error of type end-of-file is signaled. Otherwise,
a character, y, is read, and one of the following actions is performed according to its syntaz

type:
e If y is a constituent, macro, or whitespaces character, y is treated as a constituent

whose only constituent trait is alphabetics. Y is appended to the token being built,
and step 9 is repeated.

2-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

o If y is a single escape character, then the next character, z, is read, or an error of
type end-of-file is signaled if at end of file. Z is treated as a constituent whose only
constituent trait is alphabetico. Z is appended to the token being built, and step 9 is
repeated.

o If y is a multiple escape character, then step 8 is entered.
e If y is an inwvalid character, an error of type reader-error is signaled.

10. An entire token has been accumulated. The object represented by the token is returned as the
result of the read operation, or an error of type reader-error is signaled if the token is not of
valid syntax.

Syntax 2-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3 Interpretation of Tokens

2.3.1

2.3.1.1

Numbers as Tokens

When a token is read, it is interpreted as a number or symbol. The token is interpreted as a
number if it satisfies the syntax for numbers specified in Figure 2-9.

Linteger | |ratio | | float

numeric-token ::

integer = [sign] {decimal-digit}" decimal-point | [sign] {digit}"
ratio = [sign] {digit}" slash {digit}"
float ::= [sign] {decimal-digit}* decimal-point {decimal-digit}* [|exponent]
| [sign] {decimal-digit}™ [decimal-point {decimal-digit}*] |exponent
exponent ::= exponent-marker [sign] {digit}*

sign—a, sign.

slash—a slash

decimal-point—a dot.
exponent-marker—an exponent marker.
decimal-digit—a digit in radixz 10.
digit—a digit in the current input radix.

Figure 2-9. Syntax for Numeric Tokens

Potential Numbers as Tokens

To allow implementors and future Common Lisp standards to extend the syntax of numbers, a
syntax for potential numbers is defined that is more general than the syntax for numbers. A token
is a potential number if it satisfies all of the following requirements:

1.

The token consists entirely of digits, signs, ratio markers, decimal points (.), extension
characters (» or _), and number markers. A number marker is a letter. Whether a letter may
be treated as a number marker depends on context, but no letter that is adjacent to another
letter may ever be treated as a number marker. Fzponent markers are number markers.

The token contains at least one digit. Letters may be considered to be digits, depending on
the current input base, but only in tokens containing no decimal points.

The token begins with a digit, sign, decimal point, or extension character, but not a package

marker. The syntax involving a leading package marker followed by a potential number is not
well-defined. The consequences of the use of notation such as :1, :1/2, and :23 in a position
where an expression appropriate for read is expected are unspecified.

2-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4. The token does not end with a sign.

If a potential number has number syntax, a number of the appropriate type is constructed and re-
turned, if the number is representable in an implementation. A number will not be representable
in an implementation if it is outside the boundaries set by the implementation-dependent con-
stants for numbers. For example, specifying too large or too small an exponent for a float may
make the number impossible to represent in the implementation. A ratio with denominator zero
(such as -35/000) is not represented in any implementation. When a token with the syntax of a
number cannot be converted to an internal number, an error of type reader-error is signaled. An
error must not be signaled for specifying too many significant digits for a float; a truncated or
rounded value should be produced.

If there is an ambiguity as to whether a letter should be treated as a digit or as a number marker,
the letter is treated as a digit.

2.3.1.1.1 Escape Characters and Potential Numbers

A potential number cannot contain any escape characters. An escape character robs the following
character of all syntactic qualities, forcing it to be strictly alphabetico and therefore unsuitable
for use in a potential number. For example, all of the following representations are interpreted as
symbols, not numbers:

\266 25\64 1.0\E6 [100] 3\.14159 13741 3\/4 5]|

In each case, removing the escape character (or characters) would cause the token to be a poten-
tial number.

2.3.1.1.2 Examples of Potential Numbers

As examples, the tokens in Figure 2-10 are potential numbers, but they are not actually numbers,
and so are reserved tokens; a conforming implementation is permitted, but not required, to define
their meaning.

1b5000 TT7777q 1.7J -3/4+6.7J 12/25/83
27719 374/5 6//7 3.1.2.6 N=-43"
3.141.592_653.589.793.238_4 -3.7+2.61-6.17j+19.6k

Figure 2-10. Examples of reserved tokens

The tokens in Figure 2—11 are not potential numbers; they are always treated as symbols:

/ /5 + 1+ 1-
foo+ ab.cd _ A N -

Figure 2—11. Examples of symbols

Syntax 2-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The tokens in Figure 2-12 are potential numbers if the current input base is 16, but they are
always treated as symbols if the current input base is 10.

bad-face 25-dec-83 a/b fad_cafe f~

Figure 2—-12. Examples of symbols or potential numbers

2.3.2 Constructing Numbers from Tokens
A real is constructed directly from a corresponding numeric token; see Figure 2-9.

A complex is notated as a #C (or #c) followed by a list of two reals; see Section 2.4.8.11 (Sharp-
sign C).

The reader macros #B, #0, #X, and #R may also be useful in controlling the input radiz in which
rationals are parsed; see Section 2.4.8.7 (Sharpsign B), Section 2.4.8.8 (Sharpsign O), Section
2.4.8.9 (Sharpsign X), and Section 2.4.8.10 (Sharpsign R).

This section summarizes the full syntax for numbers.

2.3.2.1 Syntax of a Rational

2.3.2.1.1 Syntax of an Integer

Integers can be written as a sequence of digits, optionally preceded by a sign and optionally
followed by a decimal point; see Figure 2-9. When a decimal point is used, the digits are taken
to be in radiz 10; when no decimal point is used, the digits are taken to be in radix given by the
current input base.

For information on how integers are printed, see Section 22.1.3.1.1 (Printing Integers).

2.3.2.1.2 Syntax of a Ratio

Ratios can be written as an optional sign followed by two non-empty sequences of digits sepa-
rated by a slash; see Figure 2-9. The second sequence may not consist entirely of zeros. Examples
of ratios are in Figure 2-13.

2-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.2.2

2/3 ;This is in canonical form

4/6 ;A non-canonical form for 2/3

-17/23 ;A ratio preceded by a sign
-30517578125/32768 ;This is (—5/2)'

10/5 ;The canonical form for this is 2

#0-101/75 ;Octal notation for —65/61

#3r120/21 ;Ternary notation for 15/7

#Xbc/ad ;Hexadecimal notation for 188/173
#xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

Figure 2—-13. Examples of Ratios

For information on how ratios are printed, see Section 22.1.3.1.2 (Printing Ratios).

Syntax of a Float

Floats can be written in either decimal fraction or computerized scientific notation: an optional
sign, then a non-empty sequence of digits with an embedded decimal point, then an optional
decimal exponent specification. If there is no exponent specifier, then the decimal point is re-
quired, and there must be digits after it. The exponent specifier consists of an exponent marker,
an optional sign, and a non-empty sequence of digits. If no exponent specifier is present, or if the
exponent marker e (or E) is used, then the format specified by *read-default-float-format* is
used. See Figure 2-9.

An implementation may provide one or more kinds of float that collectively make up the type
float. The letters s, £, d, and 1 (or their respective uppercase equivalents) explicitly specify the
use of the types short-float, single-float, double-float, and long-float, respectively.

The internal format used for an external representation depends only on the exponent marker,
and not on the number of decimal digits in the external representation.

Figure 2-14 contains examples of notations for floats:

Syntax 2-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.2.3

0.0 ;Floating-point zero in default format

OEO ;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.

0e0 ;As input, this is also floating-point zero in default format.
;As output, this would appear as 0.0.

-.0 ;As input, this might be a zero or a minus zero,

; depending on whether the implementation supports
; a distinct minus zero.
;As output, 0.0 is zero and -0.0 is minus zero.

0. ;On input, the integer zero—not a floating-point number!
;Whether this appears as 0 or 0. on output depends
;on the value of *print-radix*.

0.0s0 ;A floating-point zero in short format

0s0 ;As input, this is a floating-point zero in short format.
;As output, such a zero would appear as 0.0s0
; (or as 0.0 if short-float was the default format).

6.02E+23 ;Avogadro’s number, in default format

602E+21 ;Also Avogadro’s number, in default format

Figure 2-14. Examples of Floating-point numbers

For information on how floats are printed, see Section 22.1.3.1.3 (Printing Floats).

Syntax of a Complex

A complex has a Cartesian structure, with a real part and an imaginary part each of which is a
real. The parts of a complex are not necessarily floats but both parts must be of the same type:
either both are rationals, or both are of the same float subtype. When constructing a complex, if
the specified parts are not the same type, the parts are converted to be the same type internally
(i.e., the rational part is converted to a float). An object of type (complex rational) is converted
internally and represented thereafter as a rational if its imaginary part is an integer whose value
is 0.

For further information, see Section 2.4.8.11 (Sharpsign C) and Section 22.1.3.1.4 (Printing
Complexes).

2.3.3 The Consing Dot

If a token consists solely of dots (with no escape characters), then an error of type reader-error
is signaled, except in one circumstance: if the token is a single dot and appears in a situation
where dotted pair notation permits a dot, then it is accepted as part of such syntax and no error
is signaled. See Section 2.4.1 (Left-Parenthesis).

2-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.3.4 Symbols as Tokens

Any token that is not a potential number, does not contain a package marker, and does not
consist entirely of dots will always be interpreted as a symbol. Any token that is a potential
number but does not fit the number syntax is a reserved token and has an implementation-
dependent interpretation. In all other cases, the token is construed to be the name of a symbol.

Examples of the printed representation of symbols are in Figure 2-15. For presentational simplic-
ity, these examples assume that the readtable case of the current readtable is :upcase.

FROBBOZ
frobboz
fRObBoz
unwind-protect
+$

1+

+1
pascal_style
file.rel.43
A\ (

\+1

+\1

\frobboz
3.14159265\s0
3.14159265\50
3.14159265s0

The symbol whose name is FROBBOZ.
Another way to notate the same symbol.
Yet another way to notate it.

A symbol with a hyphen in its name.

The symbol named +$.

The symbol named 1+.

This is the integer 1, not a symbol.

This symbol has an underscore in its name.
This symbol has periods in its name.

The symbol whose name is (.

The symbol whose name is +1.

Also the symbol whose name is +1.

The symbol whose name is £ROBBOZ.

The symbol whose name is 3.14159265s0.
A different symbol, whose name is 3.14159265S0.
A possible short float approximation to 7.

Figure 2—15. Examples of the printed representation of symbols (Part 1 of 2)

Syntax 2-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

APLA\\360 The symbol whose name is APL\360.
ap1\\360 Also the symbol whose name is APL\360.
\(bA2\)\ -\ 4xaxc The name is (Br2) - 4*AxC.

Parentheses and two spaces in it.
N(\br2\)\ -\4*\ax\c The name is (b"2) - 4*a*c.

Letters explicitly lowercase.
"] The same as writing \".

| (b"2) - 4xaxc The name is (b72) - 4xaxc.

| frobboz | The name is frobboz, not FROBBOZ.

| APL\360 | The name is APL360.

| APL\\360 | The name is APL\360.

lap1\\360] The name is apl\360.

ININT Same as \|\| —the name is | 1.

| (Br2) - 4xAxC| The name is (Br2) - 4xAxC.
Parentheses and two spaces in it.

| (072) - 4dxaxc]| The name is (b72) - 4xaxc.

Figure 2-16. Examples of the printed representation of symbols (Part 2 of 2)

In the process of parsing a symbol, it is implementation-dependent which implementation-defined
attributes are removed from the characters forming a token that represents a symbol.

When parsing the syntax for a symbol, the Lisp reader looks up the name of that symbol in the
current package. This lookup may involve looking in other packages whose external symbols are
inherited by the current package. If the name is found, the corresponding symbol is returned. If
the name is not found (that is, there is no symbol of that name accessible in the current package),
a new symbol is created and is placed in the current package as an internal symbol. The current
package becomes the owner (home package) of the symbol, and the symbol becomes interned in
the current package. If the name is later read again while this same package is current, the same
symbol will be found and returned.

2.3.5 Valid Patterns for Tokens

The valid patterns for tokens are summarized in Figure 2-17.

2—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nnnnn a number

TXTXL a symbol in the current package

: XTTTT a symbol in the the KEYWORD package
PPPPD: TLTLL an external symbol in the ppppp package
PPPPP: : TTTLT a (possibly internal) symbol in the ppppp package
:nnnnn undefined

PPPPP: nuNNN undefined

PPPPP: : nnnnn undefined

1 aaaaaq undefined

aaaaa: undefined

aaaaa: aaaaa: aaaaa undefined

Figure 2—17. Valid patterns for tokens

Note that nnnnn has number syntax, neither xzxzzz nor ppppp has number syntax, and aaaaa has
any syntax.

A summary of rules concerning package markers follows. In each case, examples are offered to
illustrate the case; for presentational simplicity, the examples assume that the readtable case of
the current readtable is :upcase.

1.

If there is a single package marker, and it occurs at the beginning of the token, then the
token is interpreted as a symbol in the KEYWORD package. It also sets the symbol-value of the
newly-created symbol to that same symbol so that the symbol will self-evaluate.

For example, :bar, when read, interns BAR as an external symbol in the KEYWORD package.

If there is a single package marker not at the beginning or end of the token, then it divides
the token into two parts. The first part specifies a package; the second part is the name of an
external symbol available in that package.

For example, foo:bar, when read, looks up BAR among the external symbols of the package
named F0O0.

If there are two adjacent package markers not at the beginning or end of the token, then
they divide the token into two parts. The first part specifies a package; the second part is the
name of a symbol within that package (possibly an internal symbol).

For example, foo: :bar, when read, interns BAR in the package named F0O.

If the token contains no package markers, and does not have potential number syntax, then
the entire token is the name of the symbol. The symbol is looked up in the current package.

For example, bar, when read, interns BAR in the current package.

Syntax 2-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5. The consequences are unspecified if any other pattern of package markers in a token is used.
All other uses of package markers within names of symbols are not defined by this standard
but are reserved for implementation-dependent use.

For example, assuming the readtable case of the current readtable is :upcase, editor:buffer refers
to the external symbol named BUFFER present in the package named editor, regardless of whether
there is a symbol named BUFFER in the current package. If there is no package named editor, or
if no symbol named BUFFER is present in editor, or if BUFFER is not exported by editor, the reader
signals a correctable error. If editor::buffer is seen, the effect is exactly the same as reading
buffer with the EDITOR package being the current package.

2.3.6 Package System Consistency Rules

The following rules apply to the package system as long as the value of *package* is not changed:

Read-read consistency

Reading the same symbol name always results in the same symbol.

Print-read consistency

An interned symbol always prints as a sequence of characters that, when read back in,
yields the same symbol.

For information about how the Lisp printer treats symbols, see Section 22.1.3.3 (Printing
Symbols).

Print-print consistency

If two interned symbols are not the same, then their printed representations will be
different sequences of characters.

These rules are true regardless of any implicit interning. As long as the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of
what symbols were typed in when. If the value of *package* is changed and then changed back
to the previous value, consistency is maintained. The rules can be violated by changing the value
of *package*, forcing a change to symbols or to packages or to both by continuing from an error,
or calling one of the following functions: unintern, unexport, shadow, shadowing-import, or
unuse-package.

An inconsistency only applies if one of the restrictions is violated between two of the named
symbols. shadow, unexport, unintern, and shadowing-import can only affect the consistency of
symbols with the same names (under string=) as the ones supplied as arguments.

2—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4 Standard Macro Characters

If the reader encounters a macro character, then its associated reader macro function is invoked
and may produce an object to be returned. This function may read the characters following the
macro character in the stream in any syntax and return the object represented by that syntax.

Any character can be made to be a macro character. The macro characters defined initially in a
conforming implementation include the following:

2.4.1 Left-Parenthesis

The left-parenthesis initiates reading of a list. read is called recursively to read successive objects
until a right parenthesis is found in the input stream. A list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not imme-
diately follow the printed representation of the last object; whitespaces characters and comments
may precede it.

If no objects precede the right parenthesis, it reads as a list of zero objects (the empty list).

If a token that is just a dot not immediately preceded by an escape character is read after some
object then exactly one more object must follow the dot, possibly preceded or followed by whites-
paces or a comment, followed by the right parenthesis:

(abc . d

This means that the cdr of the last cons in the list is not nil, but rather the object whose repre-
sentation followed the dot. The above example might have been the result of evaluating

(cons ’a (cons ’b (cons ’c ’d)))

Similarly,

(cons ’this-one ’that-one) — (this-one . that-one)

It is permissible for the object following the dot to be a list:
(@abcd.(ef. (g)) =(bcdefg)

For information on how the Lisp printer prints lists and conses, see Section 22.1.3.5 (Printing
Lists and Conses).

2.4.2 Right-Parenthesis

The right-parenthesis is invalid except when used in conjunction with the left parenthesis charac-
ter. For more information, see Section 2.2 (Reader Algorithm).

Syntax 2-23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.3 Single-Quote

2.4.3.1

Syntax: ’{(exp))

A single-quote introduces an expression to be “quoted.” Single-quote followed by an ezpression
exp is treated by the Lisp reader as an abbreviation for and is parsed identically to the expression
(quote exp). See the special operator quote.

Examples of Single-Quote

’foo — FOO
’2foo — (QUOTE FO0O0)
(car ’’foo) — QUOTE

2.4.4 Semicolon

2441

2.4.4.2

Syntax: ;((text))
A semicolon introduces characters that are to be ignored, such as comments. The semicolon and

all characters up to and including the next newline or end of file are ignored.

Examples of Semicolon

(+ 3 ; three
4)
— 7

Notes about Style for Semicolon

Some text editors make assumptions about desired indentation based on the number of semi-
colons that begin a comment. The following style conventions are common, although not by any
means universal.

2.4.4.2.1 Use of Single Semicolon

Comments that begin with a single semicolon are all aligned to the same column at the right

(sometimes called the “comment column”). The text of such a comment generally applies only to
the line on which it appears. Occasionally two or three contain a single sentence together; this is
sometimes indicated by indenting all but the first with an additional space (after the semicolon).

2—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.4.2.2 Use of Double Semicolon

Comments that begin with a double semicolon are all aligned to the same level of indentation as
a form would be at that same position in the code. The text of such a comment usually describes
the state of the program at the point where the comment occurs, the code which follows the
comment, or both.

2.4.4.2.3 Use of Triple Semicolon

Comments that begin with a triple semicolon are all aligned to the left margin. Usually they are
used prior to a definition or set of definitions, rather than within a definition.

2.4.4.2.4 Use of Quadruple Semicolon

Comments that begin with a quadruple semicolon are all aligned to the left margin, and generally
contain only a short piece of text that serve as a title for the code which follows, and might be
used in the header or footer of a program that prepares code for presentation as a hardcopy
document.

2.4.4.2.5 Examples of Style for Semicolon

5555 Math Utilities

;33 FIB computes the the Fibonacci function in the traditional
;33 recursive way.

(defun fib (n)

(check-type n integer)

;; At this point we’re sure we have an integer argument.

;; Now we can get down to some serious computation.

(cond ((< n 0)
;; Hey, this is just supposed to be a simple example.
;3 Did you really expect me to handle the general case?
(error "FIB got "D as an argument." n))
((< n 2) n) ;£ib[0]=0 and fib[1]=1
;3 The cheap cases didn’t work.
;; Nothing more to do but recurse.
(t (+ (fib (- n 1)) ;The traditional formula

(fib (- n 2)))))) ; is fib[n-1]+fib[n-2].

Syntax 2-25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.5 Double-Quote
Syntax: "((text)"

The double-quote is used to begin and end a string. When a double-quote is encountered, charac-
ters are read from the input stream and accumulated until another double-quote is encountered.
If a single escape character is seen, the single escape character is discarded, the next character is
accumulated, and accumulation continues. The accumulated characters up to but not including
the matching double-quote are made into a simple string and returned. It is implementation-
dependent which attributes of the accumulated characters are removed in this process.

Examples of the use of the double-quote character are in Figure 2-18.

"Foo" ;A string with three characters in it
o ;An empty string

"\"APL\\3607\" he cried." ;A string with twenty characters
“lx| = |-x|" ;A ten-character string

Figure 2-18. Examples of the use of double-quote

Note that to place a single escape character or a double-quote into a string, such a character must
be preceded by a single escape character. Note, too, that a multiple escape character need not be
quoted by a single escape character within a string.

For information on how the Lisp printer prints strings, see Section 22.1.3.4 (Printing Strings).

2.4.6 Backquote

The backquote introduces a template of a data structure to be built. For example, writing
‘(cond ((numberp ,x) ,Qy) (t (print ,x) ,Qy))
is roughly equivalent to writing

(list ’cond
(cons (list ’numberp x) y)
(list* °t (list ’print x) y))

Where a comma occurs in the template, the expression following the comma is to be evaluated
to produce an object to be inserted at that point. Assume b has the value 3, for example, then
evaluating the form denoted by ‘(a b ,b ,(+ b 1) b) produces the result (a b 3 4 b).

If a comma is immediately followed by an at-sign, then the form following the at-sign is evaluated
to produce a list of objects. These objects are then “spliced” into place in the template. For
example, if x has the value (a b ¢), then

‘(x ,x ,0x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))
— (x (a@abc) abc foo b bar (b ¢c) baz b c)

2-26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The backquote syntax can be summarized formally as follows.

“basic is the same as ’ basic, that is, (quote basic), for any expression basic that is not a
list or a general vector.

¢, form is the same as form, for any form, provided that the representation of form does
not begin with at-sign or dot. (A similar caveat holds for all occurrences of a form after a
comma.)

¢,@form has undefined consequences.

‘(x1 x2 x3 ... xn . atom) may be interpreted to mean
(append [x1] [x2] [x3] ... [xn] (quote atom))

where the brackets are used to indicate a transformation of an xj as follows:

— [form] is interpreted as (1ist ‘form), which contains a backquoted form that
must then be further interpreted.

— [,form] is interpreted as (1ist form).

— [,eform] is interpreted as form.

“(x1 x2 x3 ... xn) may be interpreted to mean the same as the backquoted form
“(x1 x2 x3 ... xn . nil), thereby reducing it to the previous case.
“(x1 x2 x3 ... xn . ,form) may be interpreted to mean

(append [x1] [x2] [x3] ... [xn] form)

where the brackets indicate a transformation of an xj as described above.
‘(x1 x2 x3 ... xn . ,@form) has undefined consequences.

‘#(x1 x2 x3 ... xn) may be interpreted to mean (apply #’vector ‘(x1 x2 x3 ... =xn)).

“

Anywhere “,@” may be used, the syntax “,.” may be used instead to indicate that it is permis-
sible to operate destructively on the list structure produced by the form following the “,.” (in
effect, to use nconc instead of append).

If the backquote syntax is nested, the innermost backquoted form should be expanded first.
This means that if several commas occur in a row, the leftmost one belongs to the innermost
backquote.

An implementation is free to interpret a backquoted form F; as any form F5 that, when eval-
uated, will produce a result that is the same under equal as the result implied by the above

Syntax 2-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.6.1

definition, provided that the side-effect behavior of the substitute form F is also consistent with
the description given above. The constructed copy of the template might or might not share list
structure with the template itself. As an example, the above definition implies that

‘((,a b) ,c ,0d)
will be interpreted as if it were
(append (list (append (list a) (list ’b) ’nil)) (list c¢) d ’nil)
but it could also be legitimately interpreted to mean any of the following:

(append (list (append (list a) (list ’b))) (list c) d)
(append (list (append (1list a) ’(b))) (list c) d)
(list* (coms a (b)) c d)

(1ist* (comns a (list ’b)) c d)

(append (list (cons a ’(b))) (list c) d)

(list* (cons a ’(b)) c (copy-list d))

Notes about Backquote

Since the exact manner in which the Lisp reader will parse an expression involving the back-
quote reader macro is not specified, an implementation is free to choose any representation that
preserves the semantics described.

Often an implementation will choose a representation that facilitates pretty printing of the
expression, so that (pprint ‘(a ,b)) will display ‘(a ,b) and not, for example, (1ist ’a b).
However, this is not a requirement.

Implementors who have no particular reason to make one choice or another might wish to refer
to IEEFE Standard for the Scheme Programming Language, which identifies a popular choice of
representation for such expressions that might provide useful to be useful compatibility for some
user communities. There is no requirement, however, that any conforming implementation use
this particular representation. This information is provided merely for cross-reference purposes.

2.4.7 Comma

The comma is part of the backquote syntax; see Section 2.4.6 (Backquote). Comma is invalid if
used other than inside the body of a backquote expression as described above.

2—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8

Sharpsign

Sharpsign is a non-terminating dispatching macro character. It reads an optional sequence of
digits and then one more character, and uses that character to select a function to run as a reader
macro function.

The standard syntaz includes constructs introduced by the # character. The syntax of these
constructs is as follows: a character that identifies the type of construct is followed by arguments
in some form. If the character is a letter, its case is not important; #0 and #o are considered to be
equivalent, for example.

Certain # constructs allow an unsigned decimal number to appear between the # and the charac-
ter.

The reader macros associated with the dispatching macro character # are described later in this
section and summarized in Figure 2-19.

Syntax 2-29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dispatch char purpose dispatch char purpose
Backspace signals error { undefined*
Tab signals error } undefined*
Newline signals error + read-time conditional
Linefeed signals error - read-time conditional
Page signals error . read-time evaluation
Return signals error / undefined
Space signals error A a array
! undefined* B, b binary rational
" undefined C,c complex number
reference to = label D, d undefined
$ undefined E, e undefined
% undefined F,f undefined
& undefined G, g undefined
’ function abbreviation H, h undefined
(simple vector Li undefined
) signals error J, undefined
* bit vector K, k undefined
, undefined L, 1 undefined
: uninterned symbol M, m undefined
; undefined N, n undefined
< signals error 0,0 octal rational
= labels following object P, p pathname
> undefined Q, q undefined
? undefined* R, r radix-n rational
@ undefined S, s structure
[undefined* T, t undefined
\ character object U,u undefined
] undefined* V, v undefined
A undefined W, w undefined
_ undefined X, x hexadecimal rational
‘ undefined Y,y undefined
balanced comment 7,z undefined
~ undefined Rubout undefined

Figure 2—19. Standard # Dispatching Macro Character Syntax

The combinations marked by an asterisk (*) are explicitly reserved to the user. No conforming
implementation defines them.

Note also that digits do not appear in the preceding table. This is because the notations #0,
#1, ..., #9 are reserved for another purpose which occupies the same syntactic space. When a
digit follows a sharpsign, it is not treated as a dispatch character. Instead, an unsigned integer

2-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

argument is accumulated and passed as an argument to the reader macro for the character that
follows the digits. For example, #2A((1 2) (3 4)) is a use of #A with an argument of 2.

2.4.8.1 Sharpsign Backslash
Syntax: #\({(x))

When the token x is a single character long, this parses as the literal character char. Uppercase
and lowercase letters are distinguished after #\; #\A and #\a denote different character objects.
Any single character works after #\, even those that are normally special to read, such as left-
parenthesis and right-parenthesis.

In the single character case, the x must be followed by a non-constituent character. After #\ is
read, the reader backs up over the slash and then reads a token, treating the initial slash as a
single escape character (whether it really is or not in the current readtable).

When the token x is more than one character long, the x must have the syntax of a symbol
with no embedded package markers. In this case, the sharpsign backslash notation parses as the
character whose name is (string-upcase x); see Section 13.1.7 (Character Names).

For information about how the Lisp printer prints character objects, see Section 22.1.3.2 (Print-
ing Characters).

2.4.8.2 Sharpsign Single-Quote

Any expression preceded by #° (sharpsign followed by single-quote), as in #’ expression, is
treated by the Lisp reader as an abbreviation for and parsed identically to the expression
(function expression). See function. For example,

(apply #’+ 1) = (apply (function +) 1)

2.4.8.3 Sharpsign Left-Parenthesis

#(and) are used to notate a simple vector.

If an unsigned decimal integer appears between the # and (, it specifies explicitly the length of
the vector. The consequences are undefined if the number of objects specified before the closing

) exceeds the unsigned decimal integer. If the number of objects supplied before the closing)

is less than the unsigned decimal integer but greater than zero, the last object is used to fill all
remaining elements of the vector. The consequences are undefined if the unsigned decimal integer
is non-zero and number of objects supplied before the closing) is zero. For example,

#(abcccc)
#6(a b cc c c)
#6(a b c)

#6(a b c c)

Syntax 2-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.84

all mean the same thing: a vector of length 6 with elements a, b, and four occurrences of c. Other
examples follow:

#(a b c) ;A vector of length 3
#(2 3 57 11 13 17 19 23 29 31 37 41 43 47)

;A vector containing the primes below 50
#Q) ;An empty vector

The notation #() denotes an empty vector, as does #0().

For information on how the Lisp printer prints vectors, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), or Section 22.1.3.7 (Printing Other Vectors).
Sharpsign Asterisk

Syntax: #x(bits))

A simple bit vector is constructed containing the indicated bits (0’s and 1’s), where the leftmost
bit has index zero and the subsequent bits have increasing indices.

Syntax: #{(n)*((bits))

With an argument n, the vector to be created is of length n. If the number of bits is less than n
but greater than zero, the last bit is used to fill all remaining bits of the bit vector.

The notations #* and #0* each denote an empty bit vector.

Regardless of whether the optional numeric argument n is provided, the token that follows the
asterisk is delimited by a normal token delimiter. However, (unless the value of *read-suppress*
is true) an error of type reader-error is signaled if that token is not composed entirely of 0’s and
1’s, or if n was supplied and the token is composed of more than n bits, or if n is greater than
one, but no bits were specified. Neither a single escape nor a multiple escape is permitted in this
token.

For information on how the Lisp printer prints bit vectors, see Section 22.1.3.6 (Printing Bit
Vectors).

2.4.8.4.1 Examples of Sharpsign Asterisk

For example, #*%101111
#6*101111

#6*101

#6x1011

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1.

For example:

#x ;An empty bit-vector

2—-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.5

2.4.8.6

2.4.8.7

2.4.8.8

Sharpsign Colon
Syntax: #:{(symbol-name))

#: introduces an uninterned symbol whose name is symbol-name. Every time this syntax is
encountered, a distinct uninterned symbol is created. The symbol-name must have the syntax of a
symbol with no package prefix.

For information on how the Lisp reader prints uninterned symbols, see Section 22.1.3.3 (Printing
Symbols).
Sharpsign Dot

#.foo is read as the object resulting from the evaluation of the object represented by foo. The
evaluation is done during the read process, when the #. notation is encountered. The #. syntax
therefore performs a read-time evaluation of foo.

The normal effect of #. is inhibited when the value of *read-eval* is false. In that situation, an
error of type reader-error is signaled.

For an object that does not have a convenient printed representation, a form that computes the
object can be given using the #. notation.

Sharpsign B

#Brational reads rational in binary (radix 2). For example,

#B1101 = 13 ;1101,
#b101/11 = 5/3

The consequences are undefined if the token immediately following the #B does not have the
syntax of a binary (i.e., radix 2) rational.

Sharpsign O

#0rational reads rational in octal (radix 8). For example,

#037/15 = 31/13
#0777 = 511
#0105 = 69 ;105g

The consequences are undefined if the token immediately following the #0 does not have the
syntax of an octal (i.e., radix 8) rational.

Syntax 2-33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.9 Sharpsign X

#Xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lowercase letters a through £ are also acceptable). For example,

#xFO0 = 3840
#x105 = 261 ;10514

The consequences are undefined if the token immediately following the #X does not have the
syntax of a hexadecimal (i.e., radix 16) rational.
2.4.8.10 Sharpsign R

#nR

#radixRrational reads rational in radix radix. radix must consist of only digits that are interpreted
as an integer in decimal radix; its value must be between 2 and 36 (inclusive). Only valid digits
for the specified radix may be used.

For example, #3r102 is another way of writing 11 (decimal), and #11R32 is another way of writing
35 (decimal). For radices larger than 10, letters of the alphabet are used in order for the digits
after 9. No alternate # notation exists for the decimal radix since a decimal point suffices.

Figure 2-20 contains examples of the use of #B, #0, #X, and #R.

#2r11010101 ;Another way of writing 213 decimal
#b11010101 ;Ditto

#b+11010101 ;Ditto

#0325 ;Ditto, in octal radix

#xD5 ;Ditto, in hexadecimal radix
#161+D5 ;Ditto

#0-300 ;Decimal -192, written in base 8
#3r-21010 ;Same thing in base 3

#25R-7H ;Same thing in base 25

#xACCEDED ;181202413, in hexadecimal radix

Figure 2—20. Radix Indicator Example

The consequences are undefined if the token immediately following the #nR does not have the
syntax of a rational in radix n.

2.4.8.11 Sharpsign C

#C reads a following object, which must be a list of length two whose elements are both reals.
These reals denote, respectively, the real and imaginary parts of a complex number. If the two
parts as notated are not of the same data type, then they are converted according to the rules of
floating-point contagion described in Section 12.1.1.2 (Contagion in Numeric Operations).

2—-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

#C(real imag) is equivalent to #. (complex (quote real) (quote imag)), except that #C is not
affected by *read-eval*. See the function complex.

Figure 2-21 contains examples of the use of #C.

#C(3.0s1 2.0s-1) ;A compler with small float parts.

#C(5 -3) ;A “Gaussian integer”

#C(5/3 7.0) ;Will be converted internally to #C(1.66666 7.0)
#C(0 1) ;The imaginary unit; that is, i.

Figure 2—21. Complex Number Example

For further information, see Section 22.1.3.1.4 (Printing Complexes) and Section 2.3.2.3 (Syntax
of a Complex).

2.4.8.12 Sharpsign A

#nA

#nhobject constructs an n-dimensional array, using object as the value of the :initial-contents
argument to make-array.

For example, #2A((0 1 5) (foo 2 (hot dog))) represents a 2-by-3 matrix:

0 1 5
foo 2 (hot dog)

In contrast, #1A((0 1 5) (foo 2 (hot dog))) represents a vector of length 2 whose elements are
lists:

(0 1 5) (foo 2 (hot dog))
#0A((0 1 5) (foo 2 (hot dog))) represents a zero-dimensional array whose sole element is a list:
((0 1 5) (foo 2 (hot dog)))

#0A foo represents a zero-dimensional array whose sole element is the symbol foo. The notation
#1A foo is not valid because foo is not a sequence.

If some dimension of the array whose representation is being parsed is found to be 0, all dimen-
sions to the right (i.e., the higher numbered dimensions) are also considered to be 0.

For information on how the Lisp printer prints arrays, see Section 22.1.3.4 (Printing Strings),
Section 22.1.3.6 (Printing Bit Vectors), Section 22.1.3.7 (Printing Other Vectors), or Section
22.1.3.8 (Printing Other Arrays).

Syntax 2-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.13 Sharpsign S

#s(name slotl valuel slot2 value2 ...) denotes a structure. This is valid only if name is the
name of a structure type already defined by defstruct and if the structure type has a standard
constructor function. Let cm stand for the name of this constructor function; then this syntax is
equivalent to

#.(cm keywordl ’valuel keyword2 ’value2 ...)
where each keywordj is the result of computing
(intern (string slotj) (find-package ’keyword))

The net effect is that the constructor function is called with the specified slots having the spec-
ified values. (This coercion feature is deprecated; in the future, keyword names will be taken in
the package they are read in, so symbols that are actually in the KEYWORD package should be used
if that is what is desired.)

Whatever object the constructor function returns is returned by the #S syntax.
For information on how the Lisp printer prints structures, see Section 22.1.3.12 (Printing Struc-
tures).
2.4.8.14 Sharpsign P
#P reads a following object, which must be a string.

#P ((expression)) is equivalent to #. (parse-namestring ’{(expression))), except that #P is not affected
by *read-eval*.

For information on how the Lisp printer prints pathnames, see Section 22.1.3.11 (Printing Path-
names).

2.4.8.15 Sharpsign Equal-Sign
#n=

#n=object reads as whatever object has object as its printed representation. However, that object
is labeled by n, a required unsigned decimal integer, for possible reference by the syntax #n#.
The scope of the label is the exzpression being read by the outermost call to read; within this
expression, the same label may not appear twice.

2-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.16 Sharpsign Sharpsign

#n#

#n#, where n is a required unsigned decimal integer, provides a reference to some object labeled
by #n=; that is, #n# represents a pointer to the same (eq) object labeled by #n=. For example, a
structure created in the variable y by this code:

(setq x (list ’p ’q))
(setq y (list (list ’a ’b) x ’foo x))
(rplacd (last y) (cdr y))

could be represented in this way:
((a b) . #1=(#2=(p q) foo #2# . #1#))

Without this notation, but with *print-length* set to 10 and *print-circle* set to nil, the
structure would print in this way:

((ab) (pq) foo (pq) (pq foo (pq (pq foo (p g ...)

A reference #n# may only occur after a label #n=; forward references are not permitted. The
reference may not appear as the labeled object itself (that is, #n=#n#) may not be written because
the object labeled by #n=is not well defined in this case.

2.4.8.17 Sharpsign Plus

#+ provides a read-time conditionalization facility; the syntax is #+test expression. If the feature
expression test succeeds, then this textual notation represents an object whose printed represen-
tation is expression. If the feature expression test fails, then this textual notation is treated as
whitespaces; that is, it is as if the “#+ test expression” did not appear and only a space appeared
in its place.

For a detailed description of success and failure in feature expressions, see Section 24.1.2.1 (Fea-
ture Expressions).

#+ operates by first reading the feature expression and then skipping over the form if the feature
expression fails. While reading the test, the current package is the KEYWORD package. Skipping over
the form is accomplished by binding *read-suppress* to true and then calling read.

For examples, see Section 24.1.2.1.1 (Examples of Feature Expressions).

2.4.8.18 Sharpsign Minus
#- is like #+ except that it skips the expression if the test succeeds; that is,
#-test expression = #+(not test) expression

For examples, see Section 24.1.2.1.1 (Examples of Feature Expressions).

Syntax 2-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.19 Sharpsign Vertical-Bar

#|...|# is treated as a comment by the reader. It must be balanced with respect to other occur-
rences of #| and |#, but otherwise may contain any characters whatsoever.

2.4.8.19.1 Examples of Sharpsign Vertical-Bar
The following are some examples that exploit the #|...|# notation:

;55 In this example, some debugging code is commented out with #|...|#
;35 Note that this kind of comment can occur in the middle of a line
;;; (because a delimiter marks where the end of the comment occurs)
;55 where a semicolon comment can only occur at the end of a line

;;; (because it comments out the rest of the line).

(defun add3 (n) #|(format t "“&Adding 3 to “D." n)|# (+ n 3))

;5; The examples that follow show issues related to #| ... |# nesting.

;55 In this first example, #| and |# always occur properly paired,
;53 so nesting works naturally.
(defun mention-fun-fact-1a ()
(format t "CL uses ; and #|...|# in comments."))
— MENTION-FUN-FACT-1A
(mention-fun-fact-1a)

> CL uses ; and #|...|# in comments.
— NIL
#| (defun mention-fun-fact-1b ()
(format t "CL uses ; and #|...|# in comments.")) |#

(fboundp ’mention-fun-fact-1b) — NIL

;55 In this example, vertical-bar followed by sharpsign needed to appear
;55 in a string without any matching sharpsign followed by vertical-bar
;55 having preceded this. To compensate, the programmer has included a
;5; slash separating the two characters. In case 2a, the slash is

;55 unnecessary but harmless, but in case 2b, the slash is critical to
;55 allowing the outer #| ... |# pair match. If the slash were not present,
;55 the outer comment would terminate prematurely.

(defun mention-fun-fact-2a ()

(format t "Don’t use |\# unmatched or you’ll get in trouble!"))

— MENTION-FUN-FACT-2A

(mention-fun-fact-2a)
> Don’t use |# unmatched or you’ll get in trouble!
— NIL

#| (defun mention-fun-fact-2b ()

2—-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(format t "Don’t use |\# unmatched or you’ll get in trouble!") |#
(fboundp ’mention-fun-fact-2b) — NIL

;55 In this example, the programmer attacks the mismatch problem in a
;53 different way. The sharpsign vertical bar in the comment is not needed
;55 for the correct parsing of the program normally (as in case 3a), but
;;; becomes important to avoid premature termination of a comment when such
;55 a program is commented out (as in case 3b).
(defun mention-fun-fact-3a () ; #|
(format t "Don’t use |# unmatched or you’ll get in trouble!"))
— MENTION-FUN-FACT-3A
(mention-fun-fact-3a)
> Don’t use |# unmatched or you’ll get in trouble!
— NIL
#1
(defun mention-fun-fact-3b () ; #|
(format t "Don’t use |# unmatched or you’ll get in trouble!"))
| #
(fboundp ’mention-fun-fact-3b) — NIL

2.4.8.19.2 Notes about Style for Sharpsign Vertical-Bar

Some text editors that purport to understand Lisp syntax treat any |...| as balanced pairs

that cannot nest (as if they were just balanced pairs of the multiple escapes used in notat-

ing certain symbols). To compensate for this deficiency, some programmers use the notation
#11...#1...11#...||# instead of #|...#|...|#...|#. Note that this alternate usage is not a
different reader macro; it merely exploits the fact that the additional vertical-bars occur within
the comment in a way that tricks certain text editor into better supporting nested comments. As
such, one might sometimes see code like:

#11 (+ #11 3 |1#45) ||#
Such code is equivalent to:

#| (+ #| 3 |# 45) |#

2.4.8.20 Sharpsign Less-Than-Sign

#< is not valid reader syntax. The Lisp reader will signal an error of type reader-error on encoun-
tering #<. This syntax is typically used in the printed representation of objects that cannot be
read back in.

2.4.8.21 Sharpsign Whitespace

followed immediately by whitespace; is not valid reader syntax. The Lisp reader will signal an
error of type reader-error if it encounters the reader macro notation #(Newline) or #(Space).

Syntax 2-39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

2.4.8.22 Sharpsign Right-Parenthesis
This is not valid reader syntax.

The Lisp reader will signal an error of type reader-error upon encountering #).

2.4.9 Re-Reading Abbreviated Expressions

Note that the Lisp reader will generally signal an error of type reader-error when reading an
expressions that has been abbreviated because of length or level limits (see *print-level*,
print-length, and *print-lines*) due to restrictions on “..”, “...” “#” followed by whites-
pacey, and “#)”.

2-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

3. Evaluation and Compilation

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Evaluation and Compilation iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1 Evaluation

Ezxecution of code can be accomplished by a variety of means ranging from direct interpretation of
a form representing a program to invocation of compiled code produced by a compiler.

Evaluation is the process by which a program is executed in Common Lisp. The mechanism of
evaluation is manifested both implicitly through the effect of the Lisp read-eval-print loop, and
explicitly through the presence of the functions eval, compile, compile-file, and load. Any of
these facilities might share the same execution strategy, or each might use a different one.

The behavior of a conforming program processed by eval and by compile-file might differ; see
Section 3.2.2.3 (Semantic Constraints).

FEvaluation can be understood in terms of a model in which an interpreter recursively traverses
a form performing each step of the computation as it goes. This model, which describes the
semantics of Common Lisp programs, is described in Section 3.1.2 (The Evaluation Model).

3.1.1 Introduction to Environments

3.1.1.1

A binding is an association between a name and that which the name denotes. Bindings are
established in a lexical environment or a dynamic environment by particular special operators.

An environment is a set of bindings and other information used during evaluation (e.g., to
associate meanings with names).

Bindings in an environment are partitioned into namespaces. A single name can simultaneously
have more than one associated binding per environment, but can have only one associated binding
per namespace.

The Global Environment

The global environment is that part of an environment that contains bindings with both
indefinite scope and indefinite extent. The global environment contains, among other things, the
following:

e bindings of dynamic variables and constant variables.
e bindings of functions, macros, and special operators.
e bindings of compiler macros.

e bindings of type and class names

e information about proclamations.

Evaluation and Compilation 3-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.1.2

3.1.1.3

Dynamic Environments

A dynamic environment for evaluation is that part of an environment that contains bindings
whose duration is bounded by points of establishment and disestablishment within the execution
of the form that established the binding. A dynamic environment contains, among other things,
the following:

e bindings for dynamic variables.
e information about active catch tags.
e information about exit points established by unwind-protect.

e information about active handlers and restarts.

The dynamic environment that is active at any given point in the execution of a program is
referred to by definite reference as “the current dynamic environment,” or sometimes as just “the
dynamic environment.”

Within a given namespace, a name is said to be bound in a dynamic environment if there is
a binding associated with its name in the dynamic environment or, if not, there is a binding
associated with its name in the global environment.

Lexical Environments

A lexical environment for evaluation at some position in a program is that part of the environ-
ment that contains information having lexical scope within the forms containing that position. A
lezical environment contains, among other things, the following:

e bindings of lexical variables and symbol macros.

e bindings of functions and macros. (Implicit in this is information about those compiler
macros that are locally disabled.)

e bindings of block tags.
e bindings of go tags.

e information about declarations.

The lexical environment that is active at any given position in a program being semantically
processed is referred to by definite reference as “the current lexical environment,” or sometimes as
just “the lexical environment.”

Within a given namespace, a name is said to be bound in a lexical environment if there is a bind-
ing associated with its name in the lexical environment or, if not, there is a binding associated
with its name in the global environment.

3—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.1.3.1 The Null Lexical Environment

3.1.1.4

The null lexical environment is equivalent to the global environment.

Although in general the representation of an environment object is implementation-dependent, nil
can be used in any situation where an environment object is called for in order to denote the null
lezical environment.

Environment Objects

Some operators make use of an object, called an environment object, that represents the set

of lezical bindings needed to perform semantic analysis on a form in a given lexical environment.
The set of bindings in an environment object may be a subset of the bindings that would be
needed to actually perform an evaluation; for example, values associated with variable names and
function names in the corresponding lexical environment might not be available in an environ-
ment object.

The type and nature of an environment object is implementation-dependent. The values of
environment parameters to macro functions are examples of environment objects.

The object nil when used as an environment object denotes the null lexical environment; see
Section 3.1.1.3.1 (The Null Lexical Environment).

3.1.2 The Evaluation Model

3.1.2.1

A Common Lisp system evaluates forms with respect to lexical, dynamic, and global environ-
ments. The following sections describe the components of the Common Lisp evaluation model.

Form Evaluation

Forms fall into three categories: symbols, conses, and self-evaluating objects. The following
sections explain these categories.

3.1.2.1.1 Symbols as Forms

If a form is a symbol, then it is either a symbol macro or a variable.

The symbol names a symbol macro if there is a binding of the symbol as a symbol macro in the
current lexical environment (see define-symbol-macro and symbol-macrolet). If the symbol is
a symbol macro, its expansion function is obtained. The expansion function is a function of two
arguments, and is invoked by calling the macroexpand hook with the expansion function as its
first argument, the symbol as its second argument, and an environment object (corresponding
to the current lexical environment) as its third argument. The macroezpand hook, in turn, calls
the expansion function with the form as its first argument and the environment as its second
argument. The value of the expansion function, which is passed through by the macroezpand
hook, is a form. This resulting form is processed in place of the original symbol.

Evaluation and Compilation 3-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If a form is a symbol that is not a symbol macro, then it is the name of a variable, and the
value of that variable is returned. There are three kinds of variables: lexical variables, dynamic
variables, and constant variables. A wvariable can store one object. The main operations on a
variable are to read; and to write; its value.

An error of type unbound-variable should be signaled if an unbound variable is referenced.

Non-constant variables can be assigned by using setq or bounds by using let. Figure 3—1 lists
some defined names that are applicable to assigning, binding, and defining variables.

boundp let progv
defconstant let* psetq
defparameter makunbound set

defvar multiple-value-bind setq

lambda multiple-value-setq symbol-value

Figure 3—1. Some Defined Names Applicable to Variables

The following is a description of each kind of variable.

3.1.2.1.1.1 Lexical Variables

A lexical variable is a variable that can be referenced only within the lexical scope of the form
that establishes that variable; lexical variables have lexical scope. Each time a form creates a
lezical binding of a variable, a fresh binding is established.

Within the scope of a binding for a lexical variable name, uses of that name as a variable are
considered to be references to that binding except where the variable is shadoweds by a form that
establishes a fresh binding for that variable name, or by a form that locally declares the name
special.

A lexical variable always has a value. There is no operator that introduces a binding for a lexical
variable without giving it an initial value, nor is there any operator that can make a lexical
variable be unbound.

Bindings of lezical variables are found in the lexical environment.

3.1.2.1.1.2 Dynamic Variables

34

A wvariable is a dynamic variable if one of the following conditions hold:
e It is locally declared or globally proclaimed special.

e It occurs textually within a form that creates a dynamic binding for a variable of the same
name, and the binding is not shadoweds by a form that creates a lexical binding of the same
variable name.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A dynamic variable can be referenced at any time in any program; there is no textual limitation
on references to dynamic variables. At any given time, all dynamic variables with a given name
refer to exactly one binding, either in the dynamic environment or in the global environment.

The value part of the binding for a dynamic variable might be empty; in this case, the dynamic
variable is said to have no value, or to be unbound. A dynamic variable can be made unbound by
using makunbound.

The effect of binding a dynamic variable is to create a new binding to which all references to that
dynamic variable in any program refer for the duration of the evaluation of the form that creates
the dynamic binding.

A dynamic variable can be referenced outside the dynamic extent of a form that binds it. Such
a variable is sometimes called a “global variable” but is still in all respects just a dynamic vari-
able whose binding happens to exist in the global environment rather than in some dynamic
environment.

A dynamic variable is unbound unless and until explicitly assigned a value, except for those
variables whose initial value is defined in this specification or by an implementation.

3.1.2.1.1.3 Constant Variables

Certain variables, called constant variables, are reserved as “named constants.” The consequences
are undefined if an attempt is made to assign a value to, or create a binding for a constant
variable, except that a ‘compatible’ redefinition of a constant variable using defconstant is
permitted; see the macro defconstant.

Keywords, symbols defined by Common Lisp or the implementation as constant (such as nil, t,
and pi), and symbols declared as constant using defconstant are constant variables.

3.1.2.1.1.4 Symbols Naming Both Lexical and Dynamic Variables

The same symbol can name both a lexical variable and a dynamic variable, but never in the same
lexical environment.

In the following example, the symbol x is used, at different times, as the name of a lexical variable
and as the name of a dynamic variable.

(et ((x 1)) ;Binds a special variable X
(declare (special x))
(let ((x 2)) ;Binds a lexical variable X
(+ x ;Reads a lexical variable X
(locally (declare (special x))
x)))) ;Reads a special variable X
— 3

Evaluation and Compilation 3-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.2 Conses as Forms
A cons that is used as a form is called a compound form.

If the car of that compound form is a symbol, that symbol is the name of an operator, and the
form is either a special form, a macro form, or a function form, depending on the function
binding of the operator in the current lexical environment. If the operator is neither a special
operator nor a macro name, it is assumed to be a function name (even if there is no definition for
such a function).

If the car of the compound form is not a symbol, then that car must be a lambda expression, in
which case the compound form is a lambda form.

How a compound form is processed depends on whether it is classified as a special form, a macro
form, a function form, or a lambda form.

3.1.2.1.2.1 Special Forms

A special form is a form with special syntax, special evaluation rules, or both, possibly manip-
ulating the evaluation environment, control flow, or both. A special operator has access to the
current lexical environment and the current dynamic environment. Each special operator defines
the manner in which its subexpressions are treated—which are forms, which are special syntax,
etc.

Some special operators create new lexical or dynamic environments for use during the evaluation
of subforms of the special form. For example, block creates a new lexical environment that is
the same as the one in force at the point of evaluation of the block form with the addition of a
binding of the block name to an exit point from the block.

The set of special operator names is fixed in Common Lisp; no way is provided for the user to
define a special operator. Figure 3-2 lists all of the Common Lisp symbols that have definitions as
special operators.

block let* return-from
catch load-time-value setq

eval-when locally symbol-macrolet
flet macrolet tagbody
function multiple-value-call the

go multiple-value-progl throw

if progn unwind-protect
labels progv

let quote

Figure 3—2. Common Lisp Special Operators

3—6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.2.2 Macro Forms

If the operator names a macro, its associated macro function is applied to the entire form and
the result of that application is used in place of the original form.

Specifically, a symbol names a macro in a given lexical environment if macro-function is true

of the symbol and that environment. The function returned by macro-function is a function of
two arguments, called the expansion function. The expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire macro form as its
second argument, and an environment object (corresponding to the current lexical environment)
as its third argument. The macroexpand hook, in turn, calls the expansion function with the form
as its first argument and the environment as its second argument. The value of the expansion
function, which is passed through by the macroexpand hook, is a form. The returned form is
evaluated in place of the original form.

The consequences are undefined if a macro function destructively modifies any part of its form
argument.

A macro name is not a function designator, and cannot be used as the function argument to
functions such as apply, funcall, or map.

An implementation is free to implement a Common Lisp special operator as a macro. An imple-
mentation is free to implement any macro operator as a special operator, but only if an equivalent
definition of the macro is also provided.

Figure 3-3 lists some defined names that are applicable to macros.

macroexpand-hook macro-function macroexpand-1
defmacro macroexpand macrolet

Figure 3—3. Defined names applicable to macros

3.1.2.1.2.3 Function Forms

If the operator is a symbol naming a function, the form represents a function form, and the cdr
of the list contains the forms which when evaluated will supply the arguments passed to the
function.

When a function name is not defined, an error of type undefined-function should be signaled at
run time; see Section 3.2.2.3 (Semantic Constraints).

A function form is evaluated as follows:

The subforms in the cdr of the original form are evaluated in left-to-right order in the current
lexical and dynamic environments. The primary value of each such evaluation becomes an
argument to the named function; any additional values returned by the subforms are discarded.

Evaluation and Compilation 3-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The functional value of the operator is retrieved from the lezical environment, and that function
is invoked with the indicated arguments.

Although the order of evaluation of the argument subforms themselves is strictly left-to-right, it
is not specified whether the definition of the operator in a function form is looked up before the
evaluation of the argument subforms, after the evaluation of the argument subforms, or between
the evaluation of any two argument subforms if there is more than one such argument subform.

For example, the following might return 23 or 24.

(defun foo (x) (+ x 3))
(defun bar () (setf (symbol-function ’foo) #’(lambda (x) (+ x 4))))
(foo (progn (bar) 20))

A binding for a function name can be established in one of several ways. A binding for a
function name in the global environment can be established by defun, setf of fdefinition,
setf of symbol-function, ensure-generic-function, defmethod (implicitly, due to
ensure-generic-function), or defgeneric. A binding for a function name in the lexical envi-
ronment can be established by flet or labels.

Figure 34 lists some defined names that are applicable to functions.

apply fdefinition mapcan
call-arguments-limit flet mapcar
complement fmakunbound mapcon
constantly funcall mapl

defgeneric function maplist
defmethod functionp multiple-value-call
defun labels reduce

fboundp map symbol-function

Figure 3—4. Some function-related defined names

3.1.2.1.2.4 Lambda Forms

A lambda form is similar to a function form, except that the function name is replaced by a
lambda expression.

A lambda form is equivalent to using funcall of a lexical closure of the lambda expression on

the given arguments. (In practice, some compilers are more likely to produce inline code for a
lambda form than for an arbitrary named function that has been declared inline; however, such a
difference is not semantic.)

For further information, see Section 3.1.3 (Lambda Expressions).

3-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.2.1.3 Self-Evaluating Objects

A form that is neither a symbol nor a cons is defined to be a self-evaluating object. Evaluating
such an object yields the same object as a result.

Certain specific symbols and conses might also happen to be “self-evaluating” but only as a
special case of a more general set of rules for the evaluation of symbols and conses; such objects
are not considered to be self-evaluating objects.

The consequences are undefined if literal objects (including self-evaluating objects) are destruc-
tively modified.

3.1.2.1.3.1 Examples of Self-Evaluating Objects

Numbers, pathnames, and arrays are examples of self-evaluating objects.

3 — 3

#c(2/3 5/8) — #C(2/3 5/8)

#p"S: [BILL]OTHELLO.TXT" — #P"S:[BILL]OTHELLO.TXT"
#(abc) — #(A B C)

"fred smith" — "fred smith"

3.1.3 Lambda Expressions

In a lambda expression, the body is evaluated in a lexical environment that is formed by adding
the binding of each parameter in the lambda list with the corresponding value from the arguments
to the current lexical environment.

For further discussion of how bindings are established based on the lambda list, see Section 3.4
(Lambda Lists).

The body of a lambda expression is an implicit progn; the values it returns are returned by the
lambda expression.

3.1.4 Closures and Lexical Binding

A lexical closure is a function that can refer to and alter the values of lexical bindings established
by binding forms that textually include the function definition.

Consider this code, where x is not declared special:

(defun two-funs (x)
(list (function (lambda () x))
(function (lambda (y) (setq x y)))))
(setq funs (two-funs 6))
(funcall (car fumns)) — 6
(funcall (cadr funs) 43) — 43
(funcall (car fumns)) — 43

Evaluation and Compilation 3-9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The function special form coerces a lambda expression into a closure in which the lexical environ-
ment in effect when the special form is evaluated is captured along with the lambda expression.

The function two-funs returns a list of two functions, each of which refers to the binding of the
variable x created on entry to the function two-funs when it was called. This variable has the
value 6 initially, but setq can alter this binding. The lexical closure created for the first lambda
expression does not “snapshot” the value 6 for x when the closure is created; rather it captures
the binding of x. The second function can be used to alter the value in the same (captured)
binding (to 43, in the example), and this altered variable binding then affects the value returned
by the first function.

In situations where a closure of a lambda expression over the same set of bindings may be pro-
duced more than once, the various resulting closures may or may not be identical, at the discre-
tion of the implementation. That is, two functions that are behaviorally indistinguishable might
or might not be identical. Two functions that are behaviorally distinguishable are distinct. For
example:

(let ((x 8) (funs >()))
(dotimes (j 10)
(push #’(lambda (z)
(if (null z) (setq x 0) (+ x 2z)))
funs))
funs)

The result of the above form is a list of ten closures. Each requires only the binding of x. It is
the same binding in each case, but the ten closure objects might or might not be identical. On
the other hand, the result of the form

(let ((funs > ()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)
(if (null z) (setq x 0) (+ x z))))
funs)))
funs)

is also a list of ten closures. However, in this case no two of the closure objects can be identical
because each closure is closed over a distinct binding of x, and these bindings can be behaviorally
distinguished because of the use of setq.

The result of the form

(let ((funs ’*(0)))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z) (+ x z)))
funs)))
funs)

3-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.1.5

is a list of ten closure objects that might or might not be identical. A different binding of x

is involved for each closure, but the bindings cannot be distinguished because their values are
the same and immutable (there being no occurrence of setq on x). A compiler could internally
transform the form to

(let ((funs ’()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 2z)))
funs))
funs)

where the closures may be identical.
It is possible that a closure does not close over any variable bindings. In the code fragment
(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside object. In this case, the
same closure might be returned for all evaluations of the function form.

Shadowing

If two forms that establish lexical bindings with the same name N are textually nested, then
references to IV within the inner form refer to the binding established by the inner form; the
inner binding for N shadows the outer binding for N. Outside the inner form but inside the
outer one, references to N refer to the binding established by the outer form. For example:

(defun test (x z)
(let ((z (x x 2)))
(print z))
z)

The binding of the variable z by let shadows the parameter binding for the function test. The
reference to the variable z in the print form refers to the let binding. The reference to z at the
end of the function test refers to the parameter named z.

Constructs that are lexically scoped act as if new names were generated for each object on each
execution. Therefore, dynamic shadowing cannot occur. For example:

(defun contorted-example (f g x)
(if (= x 0)
(funcall f)
(block here
(+ 5 (contorted-example g
#’ (lambda () (return-from here 4))
(- x 1))

Consider the call (contorted-example nil nil 2). This produces 4. During the course of execu-
tion, there are three calls to contorted-example, interleaved with two blocks:

Evaluation and Compilation 3-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(contorted-example nil nil 2)
(block herej ...)
(contorted-example nil #’(lambda () (return-from here; 4)) 1)
(block heregy ...)
(contorted-example #’(lambda () (return-from here; 4))
#’(lambda () (return-from heres 4))
0)
(funcall f£)
where £ — #’(lambda () (return-from here; 4))
(return-from hereq 4)

At the time the funcall is executed there are two block exit points outstanding, each apparently
named here. The return-from form executed as a result of the funcall operation refers to

the outer outstanding ezit point (here;), not the inner one (hereq). It refers to that exit point
textually visible at the point of execution of function (here abbreviated by the #’ syntax) that
resulted in creation of the function object actually invoked by funcall.

If, in this example, one were to change the (funcall f£) to (funcall g), then the value of the
call (contorted-example nil nil 2) would be 9. The value would change because funcall

would cause the execution of (return-from heres 4), thereby causing a return from the inner
exit point (heres). When that occurs, the value 4 is returned from the middle invocation of
contorted-example, 5 is added to that to get 9, and that value is returned from the outer block
and the outermost call to contorted-example. The point is that the choice of exit point returned
from has nothing to do with its being innermost or outermost; rather, it depends on the lexical
environment that is packaged up with a lambda expression when function is executed.

3.1.6 Extent

Contorted-example works only because the function named by £ is invoked during the extent of
the ezit point. Once the flow of execution has left the block, the exit point is disestablished. For
example:

(defun invalid-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (invalid-example) to produce 5 by the following incorrect reasoning:
let binds y to the value of block; this value is a function resulting from the lambda expression.
Because y is not a number, it is invoked on the value 5. The return-from should then return this
value from the exit point named here, thereby exiting from the block again and giving y the value
5 which, being a number, is then returned as the value of the call to invalid-example.

The argument fails only because exit points have dynamic extent. The argument is correct up

to the execution of return-from. The execution of return-from should signal an error of type
control-error, however, not because it cannot refer to the exit point, but because it does correctly
refer to an exit point and that exit point has been disestablished.

3-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A reference by name to a dynamic ezit point binding such as a catch tag refers to the most
recently established binding of that name that has not been disestablished. For example:

(defun funl (x)

(catch ’trap (+ 3 (fun2 x))))
(defun fun2 (y)

(catch ’trap (* 5 (fun3 y))))
(defun fun3 (z)

(throw ’trap z))

Consider the call (fun1 7). The result is 10. At the time the throw is executed, there are two
outstanding catchers with the name trap: one established within procedure fun1, and the other
within procedure fun2. The latter is the more recent, and so the value 7 is returned from catch in
fun2. Viewed from within fun3, the catch in fun2 shadows the one in funi. Had fun2 been defined
as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two exit points would have different names, and therefore the one in fun1 would not be
shadowed. The result would then have been 7.

3.1.7 Return Values

Ordinarily the result of calling a function is a single object. Sometimes, however, it is convenient
for a function to compute several objects and return them.

In order to receive other than exactly one value from a form, one of several special forms or
macros must be used to request those values. If a form produces multiple values which were not
requested in this way, then the first value is given to the caller and all others are discarded; if the
form produces zero values, then the caller receives nil as a value.

Figure 3-5 lists some operators for receiving multiple values,. These operators can be used to
specify one or more forms to evaluate and where to put the values returned by those forms.

multiple-value-bind multiple-value-progl return-from
multiple-value-call multiple-value-setq throw
multiple-value-list return

Figure 3-5. Some operators applicable to receiving multiple values

The function values can produce multiple valuess. (values) returns zero values; (values form)
returns the primary value returned by form; (values forml form2) returns two values, the
primary value of forml and the primary value of form2; and so on.

See multiple-values-limit and values-list.

Evaluation and Compilation 3-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2 Compilation

3.2.1 Compiler Terminology
The following terminology is used in this section.

The compiler is a utility that translates code into an implementation-dependent form that might
be represented or executed efficiently. The term compiler refers to both of the functions compile
and compile-file.

The term compiled code refers to objects representing compiled programs, such as objects
constructed by compile or by load when loading a compiled file.

The term implicit compilation refers to compilation performed during evaluation.

The term literal object refers to a quoted object or a self-evaluating object or an object that is a
substructure of such an object. A constant variable is not itself a literal object.

The term coalesce is defined as follows. Suppose A and B are two literal constants in the source
code, and that A’ and B’ are the corresponding objects in the compiled code. If A’ and B’ are eql
but A and B are not eql, then it is said that A and B have been coalesced by the compiler.

The term minimal compilation refers to actions the compiler must take at compile time. These
actions are specified in Section 3.2.2 (Compilation Semantics).

The verb process refers to performing minimal compilation, determining the time of evaluation
for a form, and possibly evaluating that form (if required).

The term further compilation refers to implementation-dependent compilation beyond min-
1mal compilation. That is, processing does not imply complete compilation. Block compilation
and generation of machine-specific instructions are examples of further compilation. Further
compilation is permitted to take place at run time.

Four different environments relevant to compilation are distinguished: the startup environment,
the compilation environment, the evaluation environment, and the run-time environment.

The startup environment is the environment of the Lisp image from which the compiler was
invoked.

The compilation environment is maintained by the compiler and is used to hold definitions
and declarations to be used internally by the compiler. Only those parts of a definition needed for
correct compilation are saved. The compilation environment is used as the environment argument
to macro expanders called by the compiler. It is unspecified whether a definition available in the
compilation environment can be used in an evaluation initiated in the startup environment or
evaluation environment.

The evaluation environment is a run-time environment in which macro expanders and code
specified by eval-when to be evaluated are evaluated. All evaluations initiated by the compiler

3-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.2

3.2.2.1

take place in the evaluation environment.

The run-time environment is the environment in which the program being compiled will be
executed.

The compilation environment inherits from the evaluation environment, and the compilation
environment and evaluation environment might be identical. The evaluation environment inherits
from the startup environment, and the startup environment and evaluation environment might be
identical.

The term compile time refers to the duration of time that the compiler is processing source
code. At compile time, only the compilation environment and the evaluation environment are
available.

The term compile-time definition refers to a definition in the compilation environment. For
example, when compiling a file, the definition of a function might be retained in the compilation
environment if it is declared inline. This definition might not be available in the evaluation
environment.

The term run time refers to the duration of time that the loader is loading compiled code or
compiled code is being executed. At run time, only the run-time environment is available.

The term run-time definition refers to a definition in the run-time environment.

The term run-time compiler refers to the function compile or implicit compilation, for which
the compilation and run-time environments are maintained in the same Lisp image. Note that
when the run-time compiler is used, the run-time environment and startup environment are the
same.

Compilation Semantics

Conceptually, compilation is a process that traverses code, performs certain kinds of syntactic and
semantic analyses using information (such as proclamations and macro definitions) present in the
compilation environment, and produces equivalent, possibly more efficient code.

Compiler Macros

A compiler macro can be defined for a name that also names a function or macro. That is, it is
possible for a function name to name both a function and a compiler macro.

A function name names a compiler macro if compiler-macro-function is true of the function
name in the lexical environment in which it appears. Creating a lexical binding for the function
name not only creates a new local function or macro definition, but also shadowsy the compiler
macro.

The function returned by compiler-macro-function is a function of two arguments, called the
expansion function. To expand a compiler macro, the expansion function is invoked by calling the
macroexpand hook with the expansion function as its first argument, the entire compiler macro

Evaluation and Compilation 3-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

form as its second argument, and the current compilation environment (or with the current
lexical environment, if the form is being processed by something other than compile-file) as its
third argument. The macroexpand hook, in turn, calls the expansion function with the form as its
first argument and the environment as its second argument. The return value from the expansion
function, which is passed through by the macroexpand hook, might either be the same form, or
else a form that can, at the discretion of the code doing the expansion, be used in place of the
original form.

| *macroexpand-hook* compiler-macro-function define-compiler-macro

Figure 3—6. Defined names applicable to compiler macros

3.2.2.1.1 Purpose of Compiler Macros

The purpose of the compiler macro facility is to permit selective source code transformations as
optimization advice to the compiler. When a compound form is being processed (as by the com-
piler), if the operator names a compiler macro then the compiler macro function may be invoked
on the form, and the resulting expansion recursively processed in preference to performing the
usual processing on the original form according to its normal interpretation as a function form or
macro form.

A compiler macro function, like a macro function, is a function of two arguments: the entire call
form and the environment. Unlike an ordinary macro function, a compiler macro function can
decline to provide an expansion merely by returning a value that is the same as the original form.
The consequences are undefined if a compiler macro function destructively modifies any part of
its form argument.

The form passed to the compiler macro function can either be a list whose car is the function
name, or a list whose car is funcall and whose cadr is a list (function name); note that this af-
fects destructuring of the form argument by the compiler macro function. define-compiler-macro
arranges for destructuring of arguments to be performed correctly for both possible formats.

When compile-file chooses to expand a top level form that is a compiler macro form, the ex-
pansion is also treated as a top level form for the purposes of eval-when processing; see Section
3.2.3.1 (Processing of Top Level Forms).

3.2.2.1.2 Naming of Compiler Macros
Compiler macros may be defined for function names that name macros as well as functions.

Compiler macro definitions are strictly global. There is no provision for defining local compiler
macros in the way that macrolet defines local macros. Lexical bindings of a function name
shadow any compiler macro definition associated with the name as well as its global function or
macro definition.

3-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note that the presence of a compiler macro definition does not affect the values returned by func-
tions that access function definitions (e.g., fboundp) or macro definitions (e.g., macroexpand).
Compiler macros are global, and the function compiler-macro-function is sufficient to resolve
their interaction with other lexical and global definitions.

3.2.2.1.3 When Compiler Macros Are Used

The presence of a compiler macro definition for a function or macro indicates that it is desirable
for the compiler to use the expansion of the compiler macro instead of the original function form
or macro form. However, no language processor (compiler, evaluator, or other code walker) is ever
required to actually invoke compiler macro functions, or to make use of the resulting expansion if
it does invoke a compiler macro function.

When the compiler encounters a form during processing that represents a call to a compiler
macro name (that is not declared notinline), the compiler might expand the compiler macro, and
might use the expansion in place of the original form.

When eval encounters a form during processing that represents a call to a compiler macro name
(that is not declared notinline), eval might expand the compiler macro, and might use the
expansion in place of the original form.

There are two situations in which a compiler macro definition must not be applied by any lan-
guage processor:

e The global function name binding associated with the compiler macro is shadowed by a
lexical binding of the function name.

e The function name has been declared or proclaimed notinline and the call form appears
within the scope of the declaration.

It is unspecified whether compiler macros are expanded or used in any other situations.
3.2.2.1.3.1 Notes about the Implementation of Compiler Macros

Although it is technically permissible, as described above, for eval to treat compiler macros in the
same situations as compiler might, this is not necessarily a good idea in interpreted implementa-
tions.

Compiler macros exist for the purpose of trading compile-time speed for run-time speed. Pro-
grammers who write compiler macros tend to assume that the compiler macros can take more
time than normal functions and macros in order to produce code which is especially optimal for
use at run time. Since eval in an interpreted implementation might perform semantic analysis of
the same form multiple times, it might be inefficient in general for the implementation to choose
to call compiler macros on every such evaluation.

Nevertheless, the decision about what to do in these situations is left to each implementation.

Evaluation and Compilation 3-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.2.2 Minimal Compilation

Minimal compilation is defined as follows:

o All compiler macro calls appearing in the source code being compiled are expanded, if at
all, at compile time; they will not be expanded at run time.

e All macro and symbol macro calls appearing in the source code being compiled are
expanded at compile time in such a way that they will not be expanded again at run
time. macrolet and symbol-macrolet are effectively replaced by forms corresponding to
their bodies in which calls to macros are replaced by their expansions.

e The first argument in a load-time-value form in source code processed by compile
is evaluated at compile time; in source code processed by compile-file, the compiler
arranges for it to be evaluated at load time. In either case, the result of the evaluation is
remembered and used later as the value of the load-time-value form at ezecution time.

3.2.2.3 Semantic Constraints

All conforming programs must obey the following constraints, which are designed to minimize the
observable differences between compiled and interpreted programs:

e Definitions of any referenced macros must be present in the compilation environment.
Any form that is a list beginning with a symbol that does not name a special operator or
a macro defined in the compilation environment is treated by the compiler as a function
call.

e Special proclamations for dynamic variables must be made in the compilation envi-
ronment. Any binding for which there is no special declaration or proclamation in the
compilation environment is treated by the compiler as a lexical binding.

e The definition of a function that is defined and declared inline in the compilation envi-
ronment must be the same at run time.

e Within a function named F, the compiler may (but is not required to) assume that
an apparent recursive call to a function named F refers to the same definition of F',
unless that function has been declared notinline. The consequences of redefining such a
recursively defined function F while it is executing are undefined.

e A call within a file to a named function that is defined in the same file refers to that func-
tion, unless that function has been declared notinline. The consequences are unspecified

if functions are redefined individually at run time or multiply defined in the same file.

e The argument syntax and number of return values for all functions whose ftype is
declared at compile time must remain the same at run time.

3-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e (Constant variables defined in the compilation environment must have a similar value at
run time. A reference to a constant variable in source code is equivalent to a reference to
a literal object that is the value of the constant variable.

e Type definitions made with deftype or defstruct in the compilation environment must
retain the same definition at run time. Classes defined by defclass in the compilation
environment must be defined at run time to have the same superclasses and same meta-
class.

This implies that subtype/supertype relationships of type specifiers must not change
between compile time and run time.

e Type declarations present in the compilation environment must accurately describe
the corresponding values at run time; otherwise, the consequences are undefined. It is
permissible for an unknown type to appear in a declaration at compile time, though a
warning might be signaled in such a case.

e Except in the situations explicitly listed above, a function defined in the evaluation
environment is permitted to have a different definition or a different signature at run
time, and the run-time definition prevails.

Conforming programs should not be written using any additional assumptions about consistency
between the run-time environment and the startup, evaluation, and compilation environments.

Except where noted, when a compile-time and a run-time definition are different, one of the
following occurs at run time:

e an error of type error is signaled
e the compile-time definition prevails

e the run-time definition prevails

If the compiler processes a function form whose operator is not defined at compile time, no error
is signaled at compile time.

3.2.3 File Compilation

The function compile-file performs compilation of forms in a file following the rules specified in
Section 3.2.2 (Compilation Semantics), and produces an output file that can be loaded by using
load.

Normally, the top level forms appearing in a file compiled with compile-file are evaluated only
when the resulting compiled file is loaded, and not when the file is compiled. However, it is typi-
cally the case that some forms in the file need to be evaluated at compile time so the remainder of
the file can be read and compiled correctly.

Evaluation and Compilation 3-19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.3.1

The eval-when special form can be used to control whether a top level form is evaluated at com-
pile time, load time, or both. It is possible to specify any of three situations with eval-when, de-
noted by the symbols :compile-toplevel, :load-toplevel, and :execute. For top level eval-when
forms, :compile-toplevel specifies that the compiler must evaluate the body at compile time, and
:load-toplevel specifies that the compiler must arrange to evaluate the body at load time. For
non-top level eval-when forms, :execute specifies that the body must be executed in the run-time
environment.

The behavior of this form can be more precisely understood in terms of a model of how
compile-file processes forms in a file to be compiled. There are two processing modes, called
“not-compile-time” and “compile-time-too”.

Successive forms are read from the file by compile-file and processed in not-compile-time mode;
in this mode, compile-file arranges for forms to be evaluated only at load time and not at com-
pile time. When compile-file is in compile-time-too mode, forms are evaluated both at compile
time and load time.

Processing of Top Level Forms

Processing of top level forms in the file compiler is defined as follows:

1. If the form is a compiler macro form (not disabled by a notinline declaration), the
implementation might or might not choose to compute the compiler macro expansion of
the form and, having performed the expansion, might or might not choose to process the
result as a top level form in the same processing mode (compile-time-too or not-compile-
time). If it declines to obtain or use the expansion, it must process the original form.

2. If the form is a macro form, its macro expansion is computed and processed as a top level
form in the same processing mode (compile-time-too or not-compile-time).

3. If the form is a progn form, each of its body forms is sequentially processed as a top level
form in the same processing mode.

4. If the form is a locally, macrolet, or symbol-macrolet, compile-file establishes the ap-
propriate bindings and processes the body forms as top level forms with those bindings in
effect in the same processing mode. (Note that this implies that the lexical environment
in which top level forms are processed is not necessarily the null lezical environment.)

5. If the form is an eval-when form, it is handled according to Figure 3-7.

3—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

CT LT E Mode Action New Mode
Yes Yes — — Process compile-time-too
No Yes Yes CTT Process compile-time-too
No Yes Yes NCT Process not-compile-time
No Yes No — Process not-compile-time
Yes No — — Evaluate —

No No Yes CTT Evaluate —

No No Yes NCT Discard —

No No No — Discard —

Figure 3—-7. EVAL-WHEN processing

Column CT indicates whether :compile-toplevel is specified. Column LT indicates
whether :1load-toplevel is specified. Column E indicates whether :execute is specified.
Column Mode indicates the processing mode; a dash (—) indicates that the processing
mode is not relevant.

The Action column specifies one of three actions:
Process: process the body as top level forms in the specified mode.

Evaluate: evaluate the body in the dynamic execution context of the compiler, using
the evaluation environment as the global environment and the lexical environment in
which the eval-when appears.

Discard: ignore the form.

The New Mode column indicates the new processing mode. A dash (—) indicates the
compiler remains in its current mode.

6. Otherwise, the form is a top level form that is not one of the special cases. In compile-
time-too mode, the compiler first evaluates the form in the evaluation environment and
then minimally compiles it. In not-compile-time mode, the form is simply minimally
compiled. All subforms are treated as non-top-level forms.

Note that top level forms are processed in the order in which they textually appear in

the file and that each top level form read by the compiler is processed before the next is
read. However, the order of processing (including macro expansion) of subforms that are
not top level forms and the order of further compilation is unspecified as long as Common
Lisp semantics are preserved.

eval-when forms cause compile-time evaluation only at top level. Both :compile-toplevel and
:load-toplevel situation specifications are ignored for non-top-level forms. For non-top-level

Evaluation and Compilation 3—-21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

forms, an eval-when specifying the :execute situation is treated as an implicit progn including
the forms in the body of the eval-when form; otherwise, the forms in the body are ignored.

3.2.3.1.1 Processing of Defining Macros

Defining macros (such as defmacro or defvar) appearing within a file being processed by
compile-file normally have compile-time side effects which affect how subsequent forms
in the same file are compiled. A convenient model for explaining how these side effects
happen is that the defining macro expands into one or more eval-when forms, and that
the calls which cause the compile-time side effects to happen appear in the body of an
(eval-when (:compile-toplevel) ...) form.

The compile-time side effects may cause information about the definition to be stored differently
than if the defining macro had been processed in the ‘normal’ way (either interpretively or by
loading the compiled file).

In particular, the information stored by the defining macros at compile time might or might not
be available to the interpreter (either during or after compilation), or during subsequent calls

to the compiler. For example, the following code is nonportable because it assumes that the
compiler stores the macro definition of foo where it is available to the interpreter:

(defmacro foo (x) ‘(car ,x))
(eval-when (:execute :compile-toplevel :load-toplevel)
(print (foo ’(a b ¢))))

A portable way to do the same thing would be to include the macro definition inside the
eval-when form, as in:

(eval-when (:execute :compile-toplevel :load-toplevel)
(defmacro foo (x) ‘(car ,x))
(print (foo ’(a b ¢))))

Figure 3-8 lists macros that make definitions available both in the compilation and run-time
environments. It is not specified whether definitions made available in the compilation environ-
ment are available in the evaluation environment, nor is it specified whether they are available in
subsequent compilation units or subsequent invocations of the compiler. As with eval-when, these
compile-time side effects happen only when the defining macros appear at top level.

declaim define-modify-macro defsetf
defclass define-setf-expander defstruct
defconstant defmacro deftype
define-compiler-macro defpackage defvar
define-condition defparameter

Figure 3—-8. Defining Macros That Affect the Compile-Time Environment

3—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.3.1.2 Constraints on Macros and Compiler Macros

Except where explicitly stated otherwise, no macro defined in the Common Lisp standard pro-
duces an expansion that could cause any of the subforms of the macro form to be treated as top
level forms. If an implementation also provides a special operator definition of a Common Lisp
macro, the special operator definition must be semantically equivalent in this respect.

Compiler macro expansions must also have the same top level evaluation semantics as the form
which they replace. This is of concern both to conforming implementations and to conforming
programs.

3.2.4 Literal Objects in Compiled Files

3.2.4.1

The functions eval and compile are required to ensure that literal objects referenced within the
resulting interpreted or compiled code objects are the same as the corresponding objects in the
source code. compile-file, on the other hand, must produce a compiled file that, when loaded with
load, constructs the objects defined by the source code and produces references to them.

In the case of compile-file, objects constructed by load of the compiled file cannot be spoken of
as being the same as the objects constructed at compile time, because the compiled file may be
loaded into a different Lisp image than the one in which it was compiled. This section defines the
concept of similarity which relates objects in the evaluation environment to the corresponding
objects in the run-time environment.

The constraints on literal objects described in this section apply only to compile-file; eval and
compile do not copy or coalesce constants.

Externalizable Objects

The fact that the file compiler represents literal objects externally in a compiled file and must
later reconstruct suitable equivalents of those objects when that file is loaded imposes a need for
constraints on the nature of the objects that can be used as literal objects in code to be processed
by the file compiler.

An object that can be used as a literal object in code to be processed by the file compiler is called
an externalizable object.

We define that two objects are similar if they satisfy a two-place conceptual equivalence predi-

cate (defined below), which is independent of the Lisp image so that the two objects in different
Lisp images can be understood to be equivalent under this predicate. Further, by inspecting the
definition of this conceptual predicate, the programmer can anticipate what aspects of an object
are reliably preserved by file compilation.

The file compiler must cooperate with the loader in order to assure that in each case where an
externalizable object is processed as a literal object, the loader will construct a similar object.

The set of objects that are externalizable objects are those for which the new conceptual term
“stmilar” is defined, such that when a compiled file is loaded, an object can be constructed which

Evaluation and Compilation 3-23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

can be shown to be similar to the original object which existed at the time the file compiler was
operating.

3.2.4.2 Similarity of Literal Objects

3.2.4.2.1 Similarity of Aggregate Objects

Of the types over which similarity is defined, some are treated as aggregate objects. For these

types, similarity is defined recursively. We say that an object of these types has certain “basic

qualities” and to satisfy the similarity relationship, the values of the corresponding qualities of
the two objects must also be similar.

3.2.4.2.2 Definition of Similarity

Two objects S (in source code) and C' (in compiled code) are defined to be similar if and only if
they are both of one of the types listed here (or defined by the implementation) and they both
satisfy all additional requirements of similarity indicated for that type.

number

Two numbers S and C are similar if they are of the same type and represent the same
mathematical value.

character
Two simple characters S and C' are similar if they have similar code attributes.

Implementations providing additional, implementation-defined attributes must define
whether and how non-simple characters can be regarded as similar.

symbol
Two apparently uninterned symbols S and C are similar if their names are similar.

Two interned symbols S and C' are similar if their names are similar, and if either S
is accessible in the current package at compile time and C' is accessible in the current
package at load time, or C' is accessible in the package that is similar to the home
package of S.

(Note that similarity of symbols is dependent on neither the current readtable nor how
the function read would parse the characters in the name of the symbol.)

package

Two packages S and C are similar if their names are similar.

3—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note that although a package object is an externalizable object, the programmer is
responsible for ensuring that the corresponding package is already in existence when code
referencing it as a literal object is loaded. The loader finds the corresponding package
object as if by calling find-package with that name as an argument. An error is signaled
by the loader if no package exists at load time.

random-state

Two random states S and C are similar if S would always produce the same sequence of
pseudo-random numbers as a copys of C' when given as the random-state argument to the
function random, assuming equivalent limit arguments in each case.

(Note that since C' has been processed by the file compiler, it cannot be used directly as
an argument to random because random would perform a side effect.)

cons

Two conses, S and C, are similar if the cary of S is similar to the cars of C, and the
cdry of S is similar to the cdry of C.

array

Two one-dimensional arrays, S and C, are similar if the length of S is similar to the
length of C, the actual array element type of S is similar to the actual array element type
of C', and each active element of S is similar to the corresponding element of C.

Two arrays of rank other than one, S and C, are similar if the rank of S is similar to
the rank of C, each dimensiony of S is similar to the corresponding dimensiony of C, the
actual array element type of S is similar to the actual array element type of C, and each
element of S is similar to the corresponding element of C.

In addition, if S is a simple array, then C must also be a simple array. If S is a displaced
array, has a fill pointer, or is actually adjustable, C is permitted to lack any or all of
these qualities.

hash-table
Two hash tables S and C are similar if they meet the following three requirements:

1. They both have the same test (e.g., they are both eql hash tables).

2. There is a unique one-to-one correspondence between the keys of the two hash tables,
such that the corresponding keys are similar.

3. For all keys, the values associated with two corresponding keys are similar.

If there is more than one possible one-to-one correspondence between the keys of S and
C, the consequences are unspecified. A conforming program cannot use a table such as S
as an externalizable constant.

Evaluation and Compilation 3—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.2.4.3

3.2.4.4

pathname

Two pathnames S and C are similar if all corresponding pathname components are
simalar.

function

Functions are not externalizable objects.

structure-object and standard-object

A general-purpose concept of similarity does not exist for structures and standard objects.
However, a conforming program is permitted to define a make-load-form method for

any class K defined by that program that is a subclass of either structure-object or
standard-object. The effect of such a method is to define that an object S of type K in
source code is similar to an object C of type K in compiled code if C was constructed
from code produced by calling make-load-form on S.

Extensions to Similarity Rules

Some objects, such as streams, readtables, and methods are not externalizable objects under
the definition of similarity given above. That is, such objects may not portably appear as literal
objects in code to be processed by the file compiler.

An implementation is permitted to extend the rules of similarity, so that other kinds of objects
are externalizable objects for that implementation.

If for some kind of object, similarity is neither defined by this specification nor by the implemen-
tation, then the file compiler must signal an error upon encountering such an object as a literal
constant.

Additional Constraints on Externalizable Objects

If two literal objects appearing in the source code for a single file processed with the file compiler
are the identical, the corresponding objects in the compiled code must also be the identical. With
the exception of symbols and packages, any two literal objects in code being processed by the file
compiler may be coalesced if and only if they are similar; if they are either both symbols or both
packages, they may only be coalesced if and only if they are identical.

Objects containing circular references can be externalizable objects. The file compiler is required
to preserve eqlness of substructures within a file. Preserving eqlness means that subobjects that
are the same in the source code must be the same in the corresponding compiled code.

In addition, the following are constraints on the handling of literal objects by the file compiler:

3—26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

array: If an array in the source code is a simple array, then the corresponding array in the
compiled code will also be a simple array. If an array in the source code is displaced, has

a fill pointer, or is actually adjustable, the corresponding array in the compiled code might
lack any or all of these qualities. If an array in the source code has a fill pointer, then the
corresponding array in the compiled code might be only the size implied by the fill pointer.

packages: The loader is required to find the corresponding package object as if by calling
find-package with the package name as an argument. An error of type package-error is
signaled if no package of that name exists at load time.

random-state: A constant random state object cannot be used as the state argument to the
function random because random modifies this data structure.

structure, standard-object: Objects of type structure-object and standard-object may
appear in compiled constants if there is an appropriate make-load-form method defined for
that type.

The file compiler calls make-load-form on any object that is referenced as a literal object if
the object is a generalized instance of standard-object, structure-object, condition, or any
of a (possibly empty) implementation-dependent set of other classes. The file compiler only
calls make-load-form once for any given object within a single file.

symbol: In order to guarantee that compiled files can be loaded correctly, users must ensure
that the packages referenced in those files are defined consistently at compile time and load
time. Conforming programs must satisfy the following requirements:

1. The current package when a top level form in the file is processed by compile-file
must be the same as the current package when the code corresponding to that top
level form in the compiled file is executed by load. In particular:

a. Any top level form in a file that alters the current package must change it to
a package of the same name both at compile time and at load time.

b. If the first non-atomic top level form in the file is not an in-package form,
then the current package at the time load is called must be a package with
the same name as the package that was the current package at the time
compile-file was called.

2. For all symbols appearing lexically within a top level form that were accessible in
the package that was the current package during processing of that top level form
at compile time, but whose home package was another package, at load time there
must be a symbol with the same name that is accessible in both the load-time current
package and in the package with the same name as the compile-time home package.

Evaluation and Compilation 3-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3. For all symbols represented in the compiled file that were external symbols in their
home package at compile time, there must be a symbol with the same name that is
an external symbol in the package with the same name at load time.

If any of these conditions do not hold, the package in which the loader looks for the affected
symbols is unspecified. Implementations are permitted to signal an error or to define this
behavior.

3.2.5 Exceptional Situations in the Compiler

compile and compile-file are permitted to signal errors and warnings, including errors due to
compile-time processing of (eval-when (:compile-toplevel) ...) forms, macro expansion, and
conditions signaled by the compiler itself.

Conditions of type error might be signaled by the compiler in situations where the compilation
cannot proceed without intervention.

In addition to situations for which the standard specifies that conditions of type warning must
or might be signaled, warnings might be signaled in situations where the compiler can determine
that the consequences are undefined or that a run-time error will be signaled. Examples of this
situation are as follows: violating type declarations, altering or assigning the value of a constant
defined with defconstant, calling built-in Lisp functions with a wrong number of arguments or
malformed keyword argument lists, and using unrecognized declaration specifiers.

The compiler is permitted to issue warnings about matters of programming style as conditions
of type style-warning. Examples of this situation are as follows: redefining a function using

a different argument list, calling a function with a wrong number of arguments, not declaring
ignore of a local variable that is not referenced, and referencing a variable declared ignore.

Both compile and compile-file are permitted (but not required) to establish a handler for
conditions of type error. For example, they might signal a warning, and restart compilation from
some implementation-dependent point in order to let the compilation proceed without manual
intervention.

Both compile and compile-file return three values, the second two indicating whether the source
code being compiled contained errors and whether style warnings were issued.

Some warnings might be deferred until the end of compilation. See with-compilation-unit.

3—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.3 Declarations

Declarations provide a way of specifying information for use by program processors, such as the
evaluator or the compiler.

Local declarations can be embedded in executable code using declare. Global declarations,
or proclamations, are established by proclaim or declaim.

The the special form provides a shorthand notation for making a local declaration about the type
of the value of a given form.

The consequences are undefined if a program violates a declaration or a proclamation.

3.3.1 Minimal Declaration Processing Requirements

In general, an implementation is free to ignore declaration specifiers except for the declaration,
notinline, safety, and special declaration specifiers.

A declaration declaration must suppress warnings about unrecognized declarations of the kind
that it declares. If an implementation does not produce warnings about unrecognized declara-
tions, it may safely ignore this declaration.

A notinline declaration must be recognized by any implementation that supports inline functions
or compiler macros in order to disable those facilities. An implementation that does not use inline
functions or compiler macros may safely ignore this declaration.

A safety declaration that increases the current safety level must always be recognized. An imple-
mentation that always processes code as if safety were high may safely ignore this declaration.

A special declaration must be processed by all implementations.

3.3.2 Declaration Specifiers

A declaration specifier is an expression that can appear at top level of a declare expression or
a declaim form, or as the argument to proclaim. It is a list whose car is a declaration identifier,
and whose cdr is data interpreted according to rules specific to the declaration identifier.

3.3.3 Declaration Identifiers
Figure 3-9 shows a list of all declaration identifiers defined by this standard.

declaration ignore special
dynamic-extent inline type
ftype notinline

ignorable optimize

Figure 3—9. Common Lisp Declaration Identifiers

Evaluation and Compilation 3—-29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

An implementation is free to support other (implementation-defined) declaration identifiers as
well. A warning might be issued if a declaration identifier is not among those defined above,
is not defined by the implementation, is not a type name, and has not been declared in a
declaration proclamation.

3.3.3.1 Shorthand notation for Type Declarations

A type specifier can be used as a declaration identifier. (type-specifier {var}*) is taken as short-
hand for (type type-specifier {var}*).

3.3.4 Declaration Scope

Declarations can be divided into two kinds: those that apply to the bindings of variables or
functions; and those that do not apply to bindings.

A declaration that appears at the head of a binding form and applies to a variable or function
binding made by that form is called a bound declaration; such a declaration affects both the
binding and any references within the scope of the declaration.

Declarations that are not bound declarations are called free declarations.

A free declaration in a form F1 that applies to a binding for a name N established by some form
F2 of which F'1 is a subform affects only references to N within F'1; it does not to apply to other
references to IV outside of F'1, nor does it affect the manner in which the binding of N by F2 is
established.

Declarations that do not apply to bindings can only appear as free declarations.

The scope of a bound declaration is the same as the lexical scope of the binding to which it
applies; for special variables, this means the scope that the binding would have had had it been a
lexical binding.

Unless explicitly stated otherwise, the scope of a free declaration includes only the body subforms
of the form at whose head it appears, and no other subforms. The scope of free declarations
specifically does not include initialization forms for bindings established by the form containing
the declarations.

Some iteration forms include step, end-test, or result subforms that are also included in the scope
of declarations that appear in the iteration form. Specifically, the iteration forms and subforms
involved are:

e do, do*: step-forms, end-test-form, and result-forms.
e dolist, dotimes: result-form

e do-all-symbols, do-external-symbols, do-symbols: result-form

3-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.3.4.1 Examples of Declaration Scope

Here is an example illustrating the scope of bound declarations.

(let ((x 1)) ; [1] 1st occurrence of x
(declare (special x)) ; [2] 2nd occurrence of x
(let ((x 2)) ; [3] 3rd occurrence of x

(let ((old-x x) ; [4] 4th occurrence of x
(x 3)) ; [5] 5th occurrence of x
(declare (special x)) ;[6] 6th occurrence of x
(list old-x x)))) ; [7] 7th occurrence of x
— (2 3)

The first occurrence of x establishes a dynamic binding of x because of the special declaration for
x in the second line. The third occurrence of x establishes a lexical binding of x (because there is
no special declaration in the corresponding let form). The fourth occurrence of x z is a reference
to the lexical binding of x established in the third line. The fifth occurrence of x establishes a
dynamic binding of x for the body of the let form that begins on that line because of the special
declaration for x in the sixth line. The reference to x in the fourth line is not affected by the
special declaration in the sixth line because that reference is not within the “would-be lezical
scope” of the variable x in the fifth line. The reference to x in the seventh line is a reference to
the dynamic binding of x established in the fifth line.

Here is another example, to illustrate the scope of a free declaration. In the following:

(lambda (&optional (x (foo 1))) ;[1]
(declare (notinline foo0)) ; [2]
(foo x)) ; [3]

the call to foo in the first line might be compiled inline even though the call to foo in the third
line must not be. This is because the notinline declaration for foo in the second line applies only
to the body on the third line. In order to suppress inlining for both calls, one might write:

(locally (declare (notinline foo)) ;[1]
(lambda (&optional (x (foo 1))) ;[2]
(foo x))) ; [3]

or, alternatively:

(lambda (&optional ; [1]
(x (locally (declare (motinline foo)) ;[2]

(foo 1)))) ; 3]

(declare (notinline foo)) ; [4]
(foo x)) ; [5]

Finally, here is an example that shows the scope of declarations in an iteration form.

(et ((x 1)) ; (1]
(declare (special x)) ;2]

Evaluation and Compilation 3-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(et ((x 2)) ; [3]
(dotimes (i x x) ; [4]
(declare (special x))))) ;I[5]

— 1

In this example, the first reference to x on the fourth line is to the lexical binding of x established
on the third line. However, the second occurrence of x on the fourth line lies within the scope of
the free declaration on the fifth line (because this is the result-form of the dotimes) and therefore
refers to the dynamic binding of x.

3—-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4 Lambda Lists

A lambda list is a list that specifies a set of parameters (sometimes called lambda variables) and

a protocol for receiving values for those parameters.

There are several kinds of lambda lists.

Context

Kind of Lambda List

defun form

defmacro form

lambda expression

flet local function definition
labels local function definition
handler-case clause specification
restart-case clause specification
macrolet local macro definition
define-method-combination
define-method-combination :arguments option
defstruct :constructor option
defgeneric form

defgeneric method clause
defmethod form

defsetf form
define-setf-expander form
deftype form
destructuring-bind form
define-compiler-macro form
define-modify-macro form

ordinary lambda list

macro lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

ordinary lambda list

macro lambda list

ordinary lambda list
define-method-combination arguments lambda
boa lambda list

generic function lambda list
specialized lambda list
specialized lambda list

defsetf lambda list

macro lambda list

deftype lambda list
destructuring lambda list

macro lambda list
define-modify-macro lambda list

Figure 3—10. What Kind of Lambda Lists to Use

Figure 3-11 lists some defined names that are applicable to lambda lists.

lambda-list-keywords lambda-parameters-limit

Figure 3—-11. Defined names applicable to lambda lists

3.4.1 Ordinary Lambda Lists

An ordinary lambda list is used to describe how a set of arguments is received by an ordinary
function. The defined names in Figure 3-12 are those which use ordinary lambda lists:

Evaluation and Compilation 3-33

list

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-method-combination handler-case restart-case
defun labels
flet lambda

Figure 3—12. Standardized Operators that use Ordinary Lambda Lists

An ordinary lambda list can contain the lambda list keywords shown in Figure 3-13.

&allow-other-keys &key &rest
&aux &optional

Figure 3—13. Lambda List Keywords used by Ordinary Lambda Lists

Each element of a lambda list is either a parameter specifier or a lambda list keyword. Implemen-
tations are free to provide additional lambda list keywords. For a list of all lambda list keywords
used by the implementation, see lambda-list-keywords.

The syntax for ordinary lambda lists is as follows:
lambda-list ::=({var}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

[ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}*
[¢allow-other-keys]]

[&aux {var | (var [init-form])}*])

A var or supplied-p-parameter must be a symbol that is not the name of a constant variable.

An init-form can be any form. Whenever any init-form is evaluated for any parameter specifier,
that form may refer to any parameter variable to the left of the specifier in which the init-form
appears, including any supplied-p-parameter variables, and may rely on the fact that no other
parameter variable has yet been bound (including its own parameter variable).

A keyword-name can be any symbol, but by convention is normally a keyword; all standardized
functions follow that convention.

An ordinary lambda list has five parts, any or all of which may be empty. For information about
the treatment of argument mismatches, see Section 3.5 (Error Checking in Function Calls).

3-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.1

3.4.1.2

3.4.1.3

3.4.1.4

Specifiers for the required parameters

These are all the parameter specifiers up to the first lambda list keyword; if there are no lambda
list keywords, then all the specifiers are for required parameters. Each required parameter is
specified by a parameter variable var. var is bound as a lexical variable unless it is declared
special.

If there are n required parameters (n may be zero), there must be at least n passed arguments,
and the required parameters are bound to the first n passed arguments; see Section 3.5 (Error
Checking in Function Calls). The other parameters are then processed using any remaining
arguments.

Specifiers for optional parameters

If &optional is present, the optional parameter specifiers are those following &optional up to the
next lambda list keyword or the end of the list. If optional parameters are specified, then each one
is processed as follows. If any unprocessed arguments remain, then the parameter variable var is
bound to the next remaining argument, just as for a required parameter. If no arguments remain,
however, then init-form is evaluated, and the parameter variable is bound to the resulting value
(or to nil if no init-form appears in the parameter specifier). If another variable name supplied-p-
parameter appears in the specifier, it is bound to true if an argument had been available, and to
false if no argument remained (and therefore init-form had to be evaluated). Supplied-p-parameter
is bound not to an argument but to a value indicating whether or not an argument had been
supplied for the corresponding var.

A specifier for a rest parameter

&rest, if present, must be followed by a single rest parameter specifier, which in turn must be fol-
lowed by another lambda list keyword or the end of the lambda list. After all optional parameter
specifiers have been processed, then there may or may not be a rest parameter. If there is a rest
parameter, it is bound to a list of all as-yet-unprocessed arguments. If no unprocessed arguments
remain, the rest parameter is bound to the empty list. If there is no rest parameter and there are
no keyword parameters, then an error should be signaled if any unprocessed arguments remain;
see Section 3.5 (Error Checking in Function Calls). The value of a rest parameter is permitted,
but not required, to share structure with the last argument to apply.

Specifiers for keyword parameters

If &key is present, all specifiers up to the next lambda list keyword or the end of the list are
keyword parameter specifiers. When keyword parameters are processed, the same arguments are
processed that would be made into a list for a rest parameter. It is permitted to specify both
&rest and &key. In this case the remaining arguments are used for both purposes; that is, all
remaining arguments are made into a [list for the rest parameter, and are also processed for the
&key parameters. If &key is specified, there must remain an even number of arguments; see
Section 3.5.1.6 (Odd Number of Keyword Arguments). These arguments are considered as pairs,
the first argument in each pair being interpreted as a name and the second as the corresponding

Evaluation and Compilation 3—-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

value. The first object of each pair must be a symbol; see Section 3.5.1.5 (Invalid Keyword
Arguments). The keyword parameter specifiers may optionally be followed by the lambda list
keyword &allow-other-keys.

In each keyword parameter specifier must be a name var for the parameter variable. If the

var appears alone or in a (var init-form) combination, the keyword name used when matching
arguments to parameters is a symbol in the KEYWORD package whose name is the same (under
string=) as var’s. If the notation ((keyword-name var) init-form) is used, then the keyword name
used to match arguments to parameters is keyword-name, which may be a symbol in any package.
(Of course, if it is not a symbol in the KEYWORD package, it does not necessarily self-evaluate, so
care must be taken when calling the function to make sure that normal evaluation still yields the
keyword name.) Thus

(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left
to right. For each keyword parameter specifier, if there is an argument pair whose name matches
that specifier’s name (that is, the names are eq), then the parameter variable for that specifier is
bound to the second item (the value) of that argument pair. If more than one such argument pair
matches, the leftmost argument pair is used. If no such argument pair exists, then the init-form
for that specifier is evaluated and the parameter variable is bound to that value (or to nil if no
init-form was specified). supplied-p-parameter is treated as for &optional parameters: it is bound
to true if there was a matching argument pair, and to false otherwise.

Unless keyword argument checking is suppressed, an argument pair must a name matched by a
parameter specifier; see Section 3.5.1.4 (Unrecognized Keyword Arguments).

If keyword argument checking is suppressed, then it is permitted for an argument pair to match
no parameter specifier, and the argument pair is ignored, but such an argument pair is accessible
through the rest parameter if one was supplied. The purpose of these mechanisms is to allow
sharing of argument lists among several lambda expressions and to allow either the caller or the
called lambda expression to specify that such sharing may be taking place.

Note that if &key is present, a keyword argument of :allow-other-keys is always permitted—
regardless of whether the associated value is true or false. However, if the value is false, other
non-matching keywords are not tolerated (unless &allow-other-keys was used).

Furthermore, if the receiving argument list specifies a regular argument which would be flagged
by :allow-other-keys, then :allow-other-keys has both its special-cased meaning (identifying
whether additional keywords are permitted) and its normal meaning (data flow into the function
in question).

3-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.4.1 Suppressing Keyword Argument Checking

If &allow-other-keys was specified in the lambda list of a function, keywords argument checking
is suppressed in calls to that function.

If the :allow-other-keys argument is true in a call to a function, keywords argument checking is
suppressed in that call.

The :allow-other-keys argument is permissible in all situations involving keywords arguments,
even when its associated value is false.

3.4.1.4.1.1 Examples of Suppressing Keyword Argument Checking

;55 The caller can supply :ALLOW-OTHER-KEYS T to suppress checking.
((lambda (&key x) x) :x 1 :y 2 :allow-other-keys t) — 1
;35 The callee can use &ALLOW-OTHER-KEYS to suppress checking.
((lambda (&key x &allow-other-keys) x) :x 1 :y 2) — 1
;33 :ALLOW-OTHER-KEYS NIL is always permitted.
((lambda (&key) t) :allow-other-keys nil) — T
;53 As with other keyword arguments, only the left-most pair
;33 named :ALLOW-OTHER-KEYS has any effect.
((lambda (&key x) x)
:x 1 :y 2 :allow-other-keys t :allow-other-keys nil)
— 1
;55 Only the left-most pair named :ALLOW-OTHER-KEYS has any effect,
;5; so in safe code this signals a PROGRAM-ERROR (and might enter the
;;; debugger). In unsafe code, the consequences are undefined.
((lambda (&key x) x) ;This call is not valid
:x 1 :y 2 :allow-other-keys nil :allow-other-keys t)

3.4.1.5 Specifiers for &aux variables

These are not really parameters. If the lambda list keyword &aux is present, all specifiers after it
are auxiliary variable specifiers. After all parameter specifiers have been processed, the auxiliary
variable specifiers (those following &aux) are processed from left to right. For each one, init-form
is evaluated and var is bound to that value (or to nil if no init-form was specified). &aux variable
processing is analogous to let* processing.

(lambda (x y &aux (a (car x)) (b 2) ¢) (list x y a b ¢))
= (lambda (x y) (let* ((a (car x)) (b 2) c) (list x y a b ¢)))

Evaluation and Compilation 3-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.1.6 Examples of Ordinary Lambda Lists

Here are some examples involving optional parameters and rest parameters:

((lambda (a b) (+ a (x b 3))) 4 5) — 19

((lambda (a &optiomal (b 2)) (+ a (x b 3))) 4 5) — 19

((lambda (a &optional (b 2)) (+ a (*x b 3))) 4) — 10

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
— (2 NIL 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6)
— (6 T 3 NIL NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x)) 6 3)
— (6 T 3 T NIL)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3 8)
— (6 T3T (8)

((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))

6 389 10 11)
— (6t 3t (89 10 11))

Here are some examples involving keyword parameters:

((lambda (a b &key ¢ d) (list a b c d)) 1 2) — (1 2 NIL NIL)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6) — (1 2 6 NIL)

((lambda (a b &key c d) (list abc d)) 12 :d 8) — (1 2 NIL 8)

((lambda (a b &key c d) (list abc d)) 12 :c 6 :4d8) — (126 8)
((lambda (a b &key c d) (list abc d)) 12 :d8 :c6) — (126 8)
((lambda (a b &key c d) (list abc d)) :al :d 8 :c 6) — (:a 1l 6 8)
((lambda (a b &key c d) (list a b c d)) :a :b :c :d) — (:a :b :d NIL)
((lambda (a b &key ((:sea c)) d) (list a b c d)) 1 2 :sea 6) — (1 2 6 NIL)
((lambda (a b &key ((c ¢)) d) (list abcd)) 1 2 ’c 6) — (1 2 6 NIL)

Here are some examples involving optional parameters, rest parameters, and keyword parameters
together:

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b c d x)) 1)
— (1 3NIL 1 ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 12)
— (1 2 NIL 1 ()
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) :c 7
— (¢ 7 NIL :c)
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :cT7)
— (1671 (:c 7))
((lambda (a &optional (b 3) &rest x &key c (d a))

3—-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.2

(list abcdx)) 16 :4d8)
— (1 6 NIL 8 (:d 8))
((lambda (a &optional (b 3) &rest x &key c (d a))
(list abcdx)) 16 :d8 :c9 :4d 10)
— (1698 (:d8 :c9 :d 10))

As an example of the use of &allow-other-keys and :allow-other-keys, consider a function that
takes two named arguments of its own and also accepts additional named arguments to be passed
to make-array:

(defun array-of-strings (str dims &rest named-pairs
&key (start 0) end &allow-other-keys)
(apply #’make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
named-pairs))

This function takes a string and dimensioning information and returns an array of the specified
dimensions, each of whose elements is the specified string. However, :start and :end named argu-
ments may be used to specify that a substring of the given string should be used. In addition, the
presence of &allow-other-keys in the lambda list indicates that the caller may supply additional
named arguments; the rest parameter provides access to them. These additional named argu-
ments are passed to make-array. The function make-array normally does not allow the named
arguments :start and :end to be used, and an error should be signaled if such named arguments
are supplied to make-array. However, the presence in the call to make-array of the named ar-
gument :allow-other-keys with a true value causes any extraneous named arguments, including
:start and :end, to be acceptable and ignored.

Generic Function Lambda Lists

A generic function lambda list is used to describe the overall shape of the argument list to be
accepted by a generic function. Individual method signatures might contribute additional keyword
parameters to the lambda list of the effective method.

A generic function lambda list is used by defgeneric.
A generic function lambda list has the following syntax:
lambda-list::=({var}*

[&optional {var | (var)}*]

[&rest var]
[&key {var | ({var | (keyword-name var)})}*

[¢allow-other-keys|])

Evaluation and Compilation 3-39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A generic function lambda list can contain the lambda list keywords shown in Figure 3-14.

&allow-other-keys &optional
&key &rest

Figure 3—14. Lambda List Keywords used by Generic Function Lambda Lists

A generic function lambda list differs from an ordinary lambda list in the following ways:

Required arguments

Zero or more required parameters must be specified.

Optional and keyword arguments

Optional parameters and keyword parameters may not have default initial value forms nor
use supplied-p parameters.

Use of &aux

The use of &aux is not allowed.

3.4.3 Specialized Lambda Lists

A specialized lambda list is used to specialize a method for a particular signature and to
describe how arguments matching that signature are received by the method. The defined names
in Figure 3—15 use specialized lambda lists in some way; see the dictionary entry for each for
information about how.

defmethod defgeneric

Figure 3—-15. Standardized Operators that use Specialized Lambda Lists

A specialized lambda list can contain the lambda list keywords shown in Figure 3-16.

&allow-other-keys &key &rest
&aux &optional

Figure 3-16. Lambda List Keywords used by Specialized Lambda Lists

3-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A specialized lambda list is syntactically the same as an ordinary lambda list except that each
required parameter may optionally be associated with a class or object for which that parameter
is specialized.
lambda-list::=({var | (var [specializer])}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}* [¢allow-other-l
[&aux {var | (var [init-form])}*1)

3.4.4 Macro Lambda Lists

A macro lambda list is used in describing macros defined by the operators in Figure 3-17.

define-compiler-macro defmacro macrolet
define-setf-expander

Figure 3—-17. Operators that use Macro Lambda Lists

With the additional restriction that an environment parameter may appear only once (at any of
the positions indicated), a macro lambda list has the following syntax:

reqvars::={var | | pattern}*
optvars::=[&optional {var | ({var | | pattern} [init-form [supplied-p-parameter]])}*]
restvar::=[{&rest | &body} {var | | pattern}]

keyvars::=[ukey {var | ({var | (keyword-name {var | |pattern})} [init-form [supplied-p-parameter]])}*
[allow-other-keys]]

auxvars::=[&aux {var | (var [init-form])}*]
envvar ;= [&environment var]
wholevar ::= [&whole var]

lambda-list::=(| wholevar |envvar |reqvars |envvar |optvars |envvar
lrestvar |envvar |keyvars |envvar |auxvars |envvar) |

(lwholevar |envvar |reqvars |envvar |optvars |envvar . var)

Evaluation and Compilation 3-41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

pattern::=(|wholevar |reqvars |optvars |restvar |keyvars |auxvars) |
(lwholevar |reqvars |optvars . var)

A macro lambda list can contain the lambda list keywords shown in Figure 3-18.

&allow-other-keys &environment &rest
&aux &key &whole
&body &optional

Figure 3—18. Lambda List Keywords used by Macro Lambda Lists

Optional parameters (introduced by &optional) and keyword parameters (introduced by &key)
can be supplied in a macro lambda list, just as in an ordinary lambda list. Both may contain
default initialization forms and supplied-p parameters.

&body is identical in function to &rest, but it can be used to inform certain output-formatting
and editing functions that the remainder of the form is treated as a body, and should be indented
accordingly. Only one of &body or &rest can be used at any particular level; see Section 3.4.4.1
(Destructuring by Lambda Lists). &body can appear at any level of a macro lambda list; for
details, see Section 3.4.4.1 (Destructuring by Lambda Lists).

&whole is followed by a single variable that is bound to the entire macro-call form; this is the
value that the macro function receives as its first argument. If &whole and a following variable
appear, they must appear first in lambda-Iist, before any other parameter or lambda list keyword.
&whole can appear at any level of a macro lambda list. At inner levels, the &whole variable is
bound to the corresponding part of the argument, as with &rest, but unlike &rest, other argu-
ments are also allowed. The use of &whole does not affect the pattern of arguments specified.

&environment is followed by a single variable that is bound to an environment representing the
lexical environment in which the macro call is to be interpreted. This environment should be
used with macro-function, get-setf-expansion, compiler-macro-function, and macroexpand
(for example) in computing the expansion of the macro, to ensure that any lexical bindings or
definitions established in the compilation environment are taken into account. &environment can
only appear at the top level of a macro lambda list, and can only appear once, but can appear
anywhere in that list; the &environment parameter is bound along with &whole before any other
variables in the lambda list, regardless of where &environment appears in the lambda list. The
object that is bound to the environment parameter has dynamic extent.

Destructuring allows a macro lambda list to express the structure of a macro call syntax. If no
lambda list keywords appear, then the macro lambda list is a tree containing parameter names at
the leaves. The pattern and the macro form must have compatible tree structure; that is, their
tree structure must be equivalent, or it must differ only in that some leaves of the pattern match
non-atomic objects of the macro form. For information about error detection in this situation, see
Section 3.5.1.7 (Destructuring Mismatch).

3—42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.4.1

A destructuring lambda list (whether at top level or embedded) can be dotted, ending in a
parameter name. This situation is treated exactly as if the parameter name that ends the list had
appeared preceded by &rest.

Tt is permissible for a macro form (or a subexpression of a macro form) to be a dotted list only
when (... &rest var) or (... . var) is used to match it. It is the responsibility of the macro
to recognize and deal with such situations.

Destructuring by Lambda Lists

Anywhere in a macro lambda list where a parameter name can appear, and where ordinary
lambda list syntax (as described in Section 3.4.1 (Ordinary Lambda Lists)) does not otherwise
allow a list, a destructuring lambda list can appear in place of the parameter name. When this is
done, then the argument that would match the parameter is treated as a (possibly dotted) list,
to be used as an argument list for satisfying the parameters in the embedded lambda list. This is
known as destructuring.

Destructuring is the process of decomposing a compound object into its component parts, us-
ing an abbreviated, declarative syntax, rather than writing it out by hand using the primitive
component-accessing functions. Each component part is bound to a variable.

A destructuring operation requires an object to be decomposed, a pattern that specifies what
components are to be extracted, and the names of the variables whose values are to be the
components.

3.4.4.1.1 Data-directed Destructuring by Lambda Lists

In data-directed destructuring, the pattern is a sample object of the type to be decomposed.
Wherever a component is to be extracted, a symbol appears in the pattern; this symbol is the
name of the variable whose value will be that component.

3.4.4.1.1.1 Examples of Data-directed Destructuring by Lambda Lists

An example pattern is
(a b o)

which destructures a list of three elements. The variable a is assigned to the first element, b to the
second, etc. A more complex example is

((first . rest) . more)

The important features of data-directed destructuring are its syntactic simplicity and the ability
to extend it to lambda-list-directed destructuring.

Evaluation and Compilation 3-43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.4.1.2 Lambda-list-directed Destructuring by Lambda Lists

An extension of data-directed destructuring of trees is lambda-list-directed destructuring. This
derives from the analogy between the three-element destructuring pattern

(first second third)
and the three-argument lambda list
(first second third)

Lambdar-list-directed destructuring is identical to data-directed destructuring if no lambda list
keywords appear in the pattern. Any list in the pattern (whether a sub-list or the whole pattern
itself) that contains a lambda list keyword is interpreted specially. Elements of the list to the left
of the first lambda list keyword are treated as destructuring patterns, as usual, but the remaining
elements of the list are treated like a function’s lambda list except that where a variable would
normally be required, an arbitrary destructuring pattern is allowed. Note that in case of ambi-
guity, lambda list syntax is preferred over destructuring syntax. Thus, after &optional a list of
elements is a list of a destructuring pattern and a default value form.

The detailed behavior of each lambda list keyword in a lambda-list-directed destructuring pattern
is as follows:

&optional

Each following element is a variable or a list of a destructuring pattern, a default value
form, and a supplied-p variable. The default value and the supplied-p variable can be
omitted. If the list being destructured ends early, so that it does not have an element

to match against this destructuring (sub)-pattern, the default form is evaluated and
destructured instead. The supplied-p variable receives the value nil if the default form is
used, t otherwise.

&rest, &body

The next element is a destructuring pattern that matches the rest of the list. &body
is identical to &rest but declares that what is being matched is a list of forms that
constitutes the body of form. This next element must be the last unless a lambda list
keyword follows it.

&aux

The remaining elements are not destructuring patterns at all, but are auxiliary variable
bindings.

& whole

The next element is a destructuring pattern that matches the entire form in a macro, or
the entire subexpression at inner levels.

3—44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

&key

Each following element is one of
a variable,

or a list of a variable, an optional initialization form, and an optional supplied-p
variable.

or a list of a list of a keyword and a destructuring pattern, an optional initialization
form, and an optional supplied-p variable.

The rest of the list being destructured is taken to be alternating keywords and values and
is taken apart appropriately.

&allow-other-keys

Stands by itself.

3.4.5 Destructuring Lambda Lists
A destructuring lambda list is used by destructuring-bind.
Destructuring lambda lists are closely related to macro lambda lists; see Section 3.4.4 (Macro
Lambda Lists). A destructuring lambda list can contain all of the lambda list keywords listed for

macro lambda lists except for &environment, and supports destructuring in the same way. Inner
lambda lists nested within a macro lambda list have the syntax of destructuring lambda lists.

A destructuring lambda list has the following syntax:
reqvars::={var | |lambda-list}*
optvars::=[&optional {var | ({var | |lambda-list} [init-form [supplied-p-parameter]])}*]
restvar::=[{&rest | &body} {var | |lambda-list}]

keyvars::=[tkey {var | ({var | (keyword-name {var | |lambda-list})} [init-form [supplied-p-parameter]])}*
[#allow-other-keys]]

auxvars::=[&aux {var | (var [init-form])}*]
envvar::=[&environment var]
wholevar ::= [&whole var]

lambda-list::=(| wholevar |reqvars |optvars |restvar | keyvars |auxvars) |

(lwholevar |reqvars |optvars . var)

Evaluation and Compilation 3-45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.6 Boa Lambda Lists

A boa lambda list is a lambda list that is syntactically like an ordinary lambda list, but that is
processed in “by order of argument” style.

A boa lambda list is used only in a defstruct form, when explicitly specifying the lambda list of a
constructor function (sometimes called a “boa constructor”).

The &optional, &rest, &aux, &key, and &allow-other-keys lambda list keywords are recognized
in a boa lambda list. The way these lambda list keywords differ from their use in an ordinary
lambda list follows.

Consider this example, which describes how destruct processes its :constructor option.

(:constructor create-foo
(a &optional b (c ’sea) &rest d &aux e (f ’eff)))

This defines create-foo to be a constructor of one or more arguments. The first argument is

used to initialize the a slot. The second argument is used to initialize the b slot. If there isn’t

any second argument, then the default value given in the body of the defstruct (if given) is used
instead. The third argument is used to initialize the c slot. If there isn’t any third argument, then
the symbol sea is used instead. Any arguments following the third argument are collected into a
list and used to initialize the d slot. If there are three or fewer arguments, then nil is placed in
the d slot. The e slot is not initialized; its initial value is implementation-defined. Finally, the £
slot is initialized to contain the symbol eff. &key and &allow-other-keys arguments default in a
manner similar to that of &optional arguments: if no default is supplied in the lambda list then
the default value given in the body of the defstruct (if given) is used instead. For example:

(defstruct (foo (:constructor CREATE-FOO (a &optional b (c ’sea)
&key (d 2)
&aux e (f ’eff))))
(@a1) (2 (c3) (d4) (e B (f6))

(create-foo 10) — #S(FO0 A 10 B 2 C SEA D 2 E implemention-dependent F EFF)
(create-foo 10 ’bee ’see :d ’dee)
— #S(FOO A 10 B BEE C SEE D DEE E implemention-dependent F EFF)

If keyword arguments of the form ((key var) [default [svar]]) are specified, the slot name is
matched with var (not key).

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possi-
ble behaviors. The &aux variables can be used to completely override the default initializations
given in the body.

If no default value is supplied for an auz variable variable, the consequences are undefined if an
attempt is later made to read the corresponding slot’s value before a value is explicitly assigned.
If such a slot has a :type option specified, this suppressed initialization does not imply a type

mismatch situation; the declared type is only required to apply when the slot is finally assigned.

3-46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

With this definition, the following can be written:
(create-foo 1 2)
instead of
(make-foo :a 1 :b 2)
and create-foo provides defaulting different from that of make-foo.

Additional arguments that do not correspond to slot names but are merely present to supply
values used in subsequent initialization computations are allowed. For example, in the definition

(defstruct (frob (:constructor create-frob
(a &key (b 3 have-b) (c-token ’c)
(c (1ist c-token (if have-b 7 2))))))
abc)

the c-token argument is used merely to supply a value used in the initialization of the c slot. The
supplied-p parameters associated with optional parameters and keyword parameters might also be
used this way.

3.4.7 Defsetf Lambda Lists
A defsetf lambda list is used by defsetf.
A defsetf lambda list has the following syntax:
lambda-list::=({var}*
[&optional {var | (var [init-form [supplied-p-parameter]])}*]
[&rest var]

ekey {var | ({var | (keyword-name var)} [init-form [supplied-p-parameter]])}*
[£allow-other-keys]]

[&environment var]
A defsetf lambda list can contain the lambda list keywords shown in Figure 3-19.

&allow-other-keys &key &rest
&environment &optional

Figure 3-19. Lambda List Keywords used by Defsetf Lambda Lists

A defsetf lambda list differs from an ordinary lambda list only in that it does not permit the use
of &aux, and that it permits use of &environment, which introduces an environment parameter.

Evaluation and Compilation 3-47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.8 Deftype Lambda Lists

A deftype lambda list is used by deftype.

A deftype lambda list has the same syntax as a macro lambda list, and can therefore contain the
lambda list keywords as a macro lambda list.

A deftype lambda list differs from a macro lambda list only in that if no init-form is supplied
for an optional parameter or keyword parameter in the lambda-list, the default value for that
parameter is the symbol * (rather than nil).

3.4.9 Define-modify-macro Lambda Lists

3.4.10

A define-modify-macro lambda list is used by define-modify-macro.

A define-modify-macro lambda list can contain the lambda list keywords shown in Figure 3-20.

| &optional &rest

Figure 3—20. Lambda List Keywords used by Define-modify-macro Lambda Lists

Define-modify-macro lambda lists are similar to ordinary lambda lists, but do not support key-
word arguments. define-modify-macro has no need match keyword arguments, and a rest param-
eter is sufficient. Auz variables are also not supported, since define-modify-macro has no body
forms which could refer to such bindings. See the macro define-modify-macro.

Define-method-combination Arguments Lambda Lists

A define-method-combination arguments lambda list is used by the :arguments option to
define-method-combination.

A define-method-combination arguments lambda list can contain the lambda list keywords shown
in Figure 3-21.

&allow-other-keys &key &rest
&aux &optional &whole

Figure 3—21. Lambda List Keywords used by Define-method-combination arguments Lambda Lists

Define-method-combination arguments lambda lists are similar to ordinary lambda lists, but also
permit the use of &whole.

3-48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.4.11 Syntactic Interaction of Documentation Strings and
Declarations

In a number of situations, a documentation string can appear amidst a series of declare ezpres-
sions prior to a series of forms.

In that case, if a string S appears where a documentation string is permissible and is not followed
by either a declare ezpression or a form then S is taken to be a form; otherwise, S is taken as

a documentation string. The consequences are unspecified if more than one such documentation
string is present.

Evaluation and Compilation 3-49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.5 Error Checking in Function Calls

3.5.1 Argument Mismatch Detection

3.5.1.1 Safe and Unsafe Calls

A call is a safe call if each of the following is either safe code or system code (other than system
code that results from macro expansion of programmer code):

the call.
the definition of the function being called.

the point of functional evaluation

The following special cases require some elaboration:

If the function being called is a generic function, it is considered safe if all of the follow-
ing are safe code or system code:

— its definition (if it was defined explicitly).
— the method definitions for all applicable methods.

— the definition of its method combination.

For the form (coerce x ’function), where x is a lambda expression, the value of the
optimize quality safety in the global environment at the time the coerce is executed
applies to the resulting function.

For a call to the function ensure-generic-function, the value of the optimize quality
safety in the environment object passed as the :environment argument applies to the
resulting generic function.

For a call to compile with a lambda expression as the argument, the value of the optimize
quality safety in the global environment at the time compile is called applies to the

resulting compiled function.

For a call to compile with only one argument, if the original definition of the function
was safe, then the resulting compiled function must also be safe.

A call to a method by call-next-method must be considered safe if each of the following
is safe code or system code:

— the definition of the generic function (if it was defined explicitly).

3-50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

— the method definitions for all applicable methods.
— the definition of the method combination.

— the point of entry into the body of the method defining form, where the binding
of call-next-method is established.

— the point of functional evaluation of the name call-next-method.

An unsafe call is a call that is not a safe call.

The informal intent is that the programmer can rely on a call to be safe, even when system code

is involved, if all reasonable steps have been taken to ensure that the call is safe. For example, if
a programmer calls mapcar from safe code and supplies a function that was compiled as safe, the
implementation is required to ensure that mapcar makes a safe call as well.

3.5.1.1.1 Error Detection Time in Safe Calls

3.5.1.2

3.5.1.3

3.5.1.4

If an error is signaled in a safe call, the exact point of the signal is implementation-dependent.
In particular, it might be signaled at compile time or at run time, and if signaled at run time, it
might be prior to, during, or after executing the call. However, it is always prior to the execution
of the body of the function being called.

Too Few Arguments

It is not permitted to supply too few arguments to a function. Too few arguments means fewer
arguments than the number of required parameters for the function.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.
Too Many Arguments

It is not permitted to supply too many arguments to a function. Too many arguments means
more arguments than the number of required parameters plus the number of optional parame-
ters; however, if the function uses &rest or &key, it is not possible for it to receive too many
arguments.

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

Unrecognized Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not recog-
nized by that function unless keyword argument checking is suppressed as described in Section
3.4.1.4.1 (Suppressing Keyword Argument Checking).

If this situation occurs in a safe call, an error of type program-error must be signaled; and in an
unsafe call the situation has undefined consequences.

Evaluation and Compilation 3-51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.5.1.5

3.5.1.6

3.5.1.7

3.5.1.8

Invalid Keyword Arguments

It is not permitted to supply a keyword argument to a function using a name that is not a
symbol.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

Odd Number of Keyword Arguments

An odd number of arguments must not be supplied for the keyword parameters.

If this situation occurs in a safe call, an error of type program-error must be signaled unless
keyword argument checking is suppressed as described in Section 3.4.1.4.1 (Suppressing Keyword
Argument Checking); and in an unsafe call the situation has undefined consequences.

Destructuring Mismatch

When matching a destructuring lambda list against a form, the pattern and the form must have
compatible tree structure, as described in Section 3.4.4 (Macro Lambda Lists).

Otherwise, in a safe call, an error of type program-error must be signaled; and in an unsafe call
the situation has undefined consequences.

Errors When Calling a Next Method

If call-next-method is called with arguments, the ordered set of applicable methods for the
changed set of arguments for call-next-method must be the same as the ordered set of applicable
methods for the original arguments to the generic function, or else an error should be signaled.

The comparison between the set of methods applicable to the new arguments and the set appli-
cable to the original arguments is insensitive to order differences among methods with the same
specializers.

If call-next-method is called with arguments that specify a different ordered set of applicable
methods and there is no next method available, the test for different methods and the associated
error signaling (when present) takes precedence over calling no-next-method.

3-52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.6 Traversal Rules and Side Effects

The consequences are undefined when code executed during an object-traversing operation de-
structively modifies the object in a way that might affect the ongoing traversal operation. In
particular, the following rules apply.

List traversal

For list traversal operations, the cdr chain of the list is not allowed to be destructively
modified.

Array traversal

For array traversal operations, the array is not allowed to be adjusted and its fill pointer,
if any, is not allowed to be changed.

Hash-table traversal

For hash table traversal operations, new elements may not be added or deleted except
that the element corresponding to the current hash key may be changed or removed.

Package traversal

For package traversal operations (e.g., do-symbols), new symbols may not be interned in
or uninterned from the package being traversed or any package that it uses except that
the current symbol may be uninterned from the package being traversed.

Evaluation and Compilation 3-53

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3.7 Destructive Operations

3.7.1 Modification of Literal Objects

The consequences are undefined if literal objects are destructively modified. For this purpose, the
following operations are considered destructive:

random-state
Using it as an argument to the function random.
cons

Changing the cary or cdry of the cons, or performing a destructive operation on an object
which is either the cars or the cdry of the cons.

array

Storing a new value into some element of the array, or performing a destructive operation
on an object that is already such an element.

Changing the fill pointer, dimensions, or displacement of the array (regardless of whether
the array is actually adjustable).

Performing a destructive operation on another array that is displaced to the array or
that otherwise shares its contents with the array.

hash-table
Performing a destructive operation on any key.

Storing a new waluey for any key, or performing a destructive operation on any object
that is such a value.

Adding or removing entries from the hash table.

structure-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

standard-object

Storing a new value into any slot, or performing a destructive operation on an object that
is the value of some slot.

Changing the class of the object (e.g., using the function change-class).

3-54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

readtable
Altering the readtable case.
Altering the syntax type of any character in this readtable.

Altering the reader macro function associated with any character in the readtable, or
altering the reader macro functions associated with characters defined as dispatching
macro characters in the readtable.

stream

Performing I/O operations on the stream, or closing the stream.

All other standardized types

[This category includes, for example, character, condition, function,
method-combination, method, number, package, pathname, restart, and symbol.]

There are no standardized destructive operations defined on objects of these types.

3.7.2 Transfer of Control during a Destructive Operation

Should a transfer of control out of a destructive operation occur (e.g., due to an error) the state
of the object being modified is implementation-dependent.

3.7.2.1 Examples of Transfer of Control during a Destructive Operation

The following examples illustrate some of the many ways in which the implementation-dependent
nature of the modification can manifest itself.

(let ((a (1ist 21 4 37 6 ’five)))
(ignore-errors (sort a #°<))
a)

— (1234 6 7 FIVE)

2% (21437 6 FIVE)

Z @

(prog foo ((a (list 1 234567 89 10)))
(sort a #’(lambda (x y) (if (zerop (random 5)) (return-from foo a) (> x y)))))
— (123456789 10)
2 (34562789101)
% 1243

Evaluation and Compilation 3-55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

lambda Symbol

Syntax:
lambda lambda-list [{declaration}* | documentation] {form}*

Arguments:
lambda-list—an ordinary lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:

A lambda expression is a list that can be used in place of a function name in certain contexts to
denote a function by directly describing its behavior rather than indirectly by referring to the
name of an established function.

Documentation is attached to the denoted function (if any is actually created) as a documentation
string.

See Also:

function, documentation, Section 3.1.3 (Lambda Expressions), Section 3.1.2.1.2.4 (Lambda
Forms), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

Notes:
The lambda form
((lambda lambda-list . body) . arguments)
is semantically equivalent to the function form
(funcall #’(lambda lambda-list . body) . arguments)
lambda Macro
Syntax:

lambda lambda-list [{declaration}* | documentation] {form}* — function

Arguments and Values:
lambda-list—an ordinary lambda list.

3-56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

declaration—a declare ezpression; not evaluated.
documentation—a string; not evaluated.

form—a form.

function—a function.

Description:

Provides a shorthand notation for a function special form involving a lambda expression such
that:

(lambda lambda-list [{declaration}* | documentation] {form}*)
= (function (lambda lambda-list [{declaration}* | documentation] {form}*))
= # (lambda lambda-list [{declaration}* | documentation] {form}*)

Examples:

(funcall (lambda (x) (+ x 3)) 4) — 7

See Also:
lambda (symbol)

Notes:
This macro could be implemented by:
(defmacro lambda (&whole form &rest bvl-decls-and-body)
(declare (ignore bvl-decls-and-body))
‘#’,form)
compile Function
Syntax:

compile name &optional definition — function, warnings-p, failure-p

Arguments and Values:
name—a function name, or nil.

definition—a lambda expression or a function. The default is the function definition of name if
it names a function, or the macro function of name if it names a macro. The consequences are
undefined if no definition is supplied when the name is nil.

function—the function-name, or a compiled function.

Evaluation and Compilation 3-57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compile

warnings-p—a generalized boolean.
failure-p—a generalized boolean.

Description:
Compiles an interpreted function.

compile produces a compiled function from definition. If the definition is a lambda expression, it
is coerced to a function. If the definition is already a compiled function, compile either produces
that function itself (i.e., is an identity operation) or an equivalent function.

If the name is nil, the resulting compiled function is returned directly as the primary value.

If a non-nil name is given, then the resulting compiled function replaces the existing function
definition of name and the name is returned as the primary value; if name is a symbol that names
a macro, its macro function is updated and the name is returned as the primary value.

Literal objects appearing in code processed by the compile function are neither copied nor
coalesced. The code resulting from the execution of compile references objects that are eql to the
corresponding objects in the source code.

compile is permitted, but not required, to establish a handler for conditions of type error. For
example, the handler might issue a warning and restart compilation from some implementation-
dependent point in order to let the compilation proceed without manual intervention.

The secondary value, warnings-p, is false if no conditions of type error or warning were detected
by the compiler, and true otherwise.

The tertiary value, failure-p, is false if no conditions of type error or warning (other than
style-warning) were detected by the compiler, and true otherwise.

Examples:

(defun foo () "bar") — FOO
(compiled-function-p #’foo) — implementation-dependent
(compile ’foo) — F00
(compiled-function-p #’foo) — true
(setf (symbol-function ’foo)
(compile nil ’(lambda () "replaced"))) — #<Compiled-Function>
(foo) — "replaced"

Affected By:

error-output, *macroexpand-hook*.
The presence of macro definitions and proclamations.

Exceptional Situations:

The consequences are undefined if the lexical environment surrounding the function to be com-
piled contains any bindings other than those for macros, symbol macros, or declarations.

3—-58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

For information about errors detected during the compilation process, see Section 3.2.5 (Excep-
tional Situations in the Compiler).

See Also:

compile-file

eval Function

Syntax:

eval form — {result}*
Arguments and Values:
form—a form.
results—the values yielded by the evaluation of form.

Description:
Evaluates form in the current dynamic environment and the null lexical environment.

eval is a user interface to the evaluator.
The evaluator expands macro calls as if through the use of macroexpand-1.

Constants appearing in code processed by eval are not copied nor coalesced. The code resulting
from the execution of eval references objects that are eql to the corresponding objects in the
source code.

Examples:

(setq form ’(1+ a) a 999) — 999

(eval form) — 1000

(eval ’form) — (1+ A)

(let ((a ’(this would break if eval used local value))) (eval form))
— 1000

See Also:
macroexpand-1, Section 3.1.2 (The Evaluation Model)

Notes:

To obtain the current dynamic value of a symbol, use of symbol-value is equivalent (and usually
preferable) to use of eval.

Note that an eval form involves two levels of evaluation for its argument. First, form is evaluated
by the normal argument evaluation mechanism as would occur with any call. The object that

Evaluation and Compilation 3-59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

results from this normal argument evaluation becomes the value of the form parameter, and is
then evaluated as part of the eval form. For example:

(eval (list ’cdr (car ’((quote (a . b)) ¢)))) — b

The argument form (list ’cdr (car ’((quote (a . b)) c))) is evaluated in the usual

way to produce the argument (cdr (quote (a . b))); eval then evaluates its argument,

(cdr (quote (a . b))), to produce b. Since a single evaluation already occurs for any argu-
ment form in any function form, eval is sometimes said to perform “an extra level of evaluation.”

eval-when Special Operator

Syntax:

eval-when ({situation}*) {form}* — {result}*

Arguments and Values:

situation—One of the symbols :compile-toplevel, :load-toplevel, :execute, compile, load, or
eval.

The use of eval, compile, and load is deprecated.
forms—an implicit progn.
results—the values of the forms if they are executed, or nil if they are not.

Description:
The body of an eval-when form is processed as an implicit progn, but only in the situations listed.

The use of the situations :compile-toplevel (or compile) and :load-toplevel (or load) controls
whether and when evaluation occurs when eval-when appears as a top level form in code pro-
cessed by compile-file. See Section 3.2.3 (File Compilation).

The use of the situation :execute (or eval) controls whether evaluation occurs for other eval-when
forms; that is, those that are not top level forms, or those in code processed by eval or compile.
If the :execute situation is specified in such a form, then the body forms are processed as an
implicit progn; otherwise, the eval-when form returns nil.

eval-when normally appears as a top level form, but it is meaningful for it to appear as a non-
top-level form. However, the compile-time side effects described in Section 3.2 (Compilation) only
take place when eval-when appears as a top level form.

Examples:

One example of the use of eval-when is that for the compiler to be able to read a file properly
when it uses user-defined reader macros, it is necessary to write

3-60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eval-when

(eval-when (:compile-toplevel :load-toplevel :execute)
(set-macro-character #\$ #’(lambda (stream char)
(declare (ignore char))
(list ’dollar (read stream))))) — T

This causes the call to set-macro-character to be executed in the compiler’s execution environ-
ment, thereby modifying its reader syntax table.

HHH The EVAL-WHEN in this case is not at toplevel, so only the :EXECUTE
N keyword is considered. At compile time, this has no effect.
HH At load time (if the LET is at toplevel), or at execution time
HHH (if the LET is embedded in some other form which does not execute
HHH until later) this sets (SYMBOL-FUNCTION ’F001) to a function which
HHH returns 1.
(et ((x 1))

(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’fool) #’(lambda () x))))

HHH If this expression occurs at the toplevel of a file to be compiled,
HHH it has BOTH a compile time AND a load-time effect of setting
HHH (SYMBOL-FUNCTION ’F002) to a function which returns 2.
(eval-when (:execute :load-toplevel :compile-toplevel)
(Qet ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo02) #’(lambda () x)))))

HHH If this expression occurs at the toplevel of a file to be compiled,
HHH it has BOTH a compile time AND a load-time effect of setting the
HHH function cell of FO0O3 to a function which returns 3.
(eval-when (:execute :load-toplevel :compile-toplevel)

(setf (symbol-function ’foo3) #’(lambda () 3)))

;35 #4: This always does nothing. It simply returns NIL.
(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

HHN If this form occurs at toplevel of a file to be compiled, FO05 is
HHH printed at compile time. If this form occurs in a non-top-level
HH position, nothing is printed at compile time. Regardless of context,
HHH nothing is ever printed at load time or execution time.
(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’fo05)))

HHNH If this form occurs at toplevel of a file to be compiled, FO06 is

Evaluation and Compilation 3—-61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eval-when

N printed at compile time. If this form occurs in a non-top-level
HHH position, nothing is printed at compile time. Regardless of context,
HHH nothing is ever printed at load time or execution time.
(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)
(print ’fo06)))

See Also:
compile-file, Section 3.2 (Compilation)

Notes:

The following effects are logical consequences of the definition of eval-when:
e Execution of a single eval-when expression executes the body code at most once.

e Macros intended for use in top level forms should be written so that side-effects are
done by the forms in the macro expansion. The macro-expander itself should not do the
side-effects.

For example:
Wrong:

(defmacro foo ()
(really-foo)
‘(really-foo))

Right:

(defmacro foo ()
‘(eval-when (:compile-toplevel :execute :load-toplevel) (really-foo)))

Adherence to this convention means that such macros behave intuitively when appearing
as non-top-level forms.

e Placing a variable binding around an eval-when reliably captures the binding because the
compile-time-too mode cannot occur (i.e., introducing a variable binding means that the
eval-when is not a top level form). For example,

(let ((x 3))
(eval-when (:execute :load-toplevel :compile-toplevel) (print x)))

prints 3 at execution (i.e., load) time, and does not print anything at compile time.
This is important so that expansions of defun and defmacro can be done in terms of
eval-when and can correctly capture the lexical environment.

(defun bar (x) (defun foo () (+ x 3)))

3-62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

might expand into

(defun bar (x)
(progn (eval-when (:compile-toplevel)
(compiler: :notice-function-definition ’foo ’(x)))
(eval-when (:execute :load-toplevel)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))))

which would be treated by the above rules the same as

(defun bar (x)
(setf (symbol-function ’foo) #’(lambda () (+ x 3))))

when the definition of bar is not a top level form.

load-time-value Special Operator

Syntax:

load-time-value form &optional read-only-p — object

Arguments and Values:
form—a form; evaluated as described below.

read-only-p—a boolean; not evaluated.

object—the primary value resulting from evaluating form.

Description:

load-time-value provides a mechanism for delaying evaluation of form until the expression is in
the run-time environment; see Section 3.2 (Compilation).

Read-only-p designates whether the result can be considered a constant object. If t, the result is a

read-only quantity that can, if appropriate to the implementation, be copied into read-only space

and/or coalesced with similar constant objects from other programs. If nil (the default), the result
must be neither copied nor coalesced; it must be considered to be potentially modifiable data.

If a load-time-value expression is processed by compile-file, the compiler performs its normal
semantic processing (such as macro expansion and translation into machine code) on form, but
arranges for the execution of form to occur at load time in a null lezical environment, with the
result of this evaluation then being treated as a literal object at run time. It is guaranteed that
the evaluation of form will take place only once when the file is loaded, but the order of evaluation
with respect to the evaluation of top level forms in the file is implementation-dependent.

Evaluation and Compilation 3—-63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

load-time-value

If a load-time-value expression appears within a function compiled with compile, the form is
evaluated at compile time in a null lexical environment. The result of this compile-time evalua-
tion is treated as a literal object in the compiled code.

If a load-time-value expression is processed by eval, form is evaluated in a null lexical environ-
ment, and one value is returned. Implementations that implicitly compile (or partially compile)
expressions processed by eval might evaluate form only once, at the time this compilation is
performed.

If the same list (load-time-value form) is evaluated or compiled more than once, it is
implementation-dependent whether form is evaluated only once or is evaluated more than once.
This can happen both when an expression being evaluated or compiled shares substructure, and
when the same form is processed by eval or compile multiple times. Since a load-time-value
expression can be referenced in more than one place and can be evaluated multiple times by
eval, it is implementation-dependent whether each execution returns a fresh object or returns the
same object as some other execution. Users must use caution when destructively modifying the
resulting object.

If two lists (load-time-value form) that are the same under equal but are not identical are
evaluated or compiled, their values always come from distinct evaluations of form. Their values
may not be coalesced unless read-only-p is t.

Examples:

;5; The function INCR1 always returns the same value, even in different images.
;5; The function INCR2 always returns the same value in a given image,

;55 but the value it returns might vary from image to image.

(defun incrl (x) (+ x #.(random 17)))

(defun incr2 (x) (+ x (load-time-value (random 17))))

;55 The function FOO1-REF references the nth element of the first of
;55 the *FOO-ARRAYS* that is available at load time. It is permissible for
;5;; that array to be modified (e.g., by SET-FOO1-REF); FOO1-REF will see the
;5> updated values.
(defvar *foo-arrays* (list (make-array 7) (make-array 8)))
(defun fool-ref (n) (aref (load-time-value (first *my-arrays*) nil) n))
(defun set-fool-ref (n val)

(setf (aref (load-time-value (first *my-arrays*) nil) n) val))

;55 The function BAR1-REF references the nth element of the first of

;55 the *BAR-ARRAYS* that is available at load time. The programmer has
;35 promised that the array will be treated as read-only, so the system
;53 can copy or coalesce the array.

(defvar *bar-arrays* (list (make-array 7) (make-array 8)))

(defun baril-ref (n) (aref (load-time-value (first *my-arrays*) t) n))

3-64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;35 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced
;55 even though NIL was specified, because the object was already read-only
;55 when it was written as a literal vector rather than created by a constructor.
;53 User programs must treat the vector v as read-only.
(defun baz-ref (n)
(let ((v (load-time-value #(A B C) nil)))
(values (svref v n) v)))

;55 This use of LOAD-TIME-VALUE permits the indicated vector to be coalesced
;55 even though NIL was specified in the outer situation because T was specified
;33 in the inner situation. User programs must treat the vector v as read-only.
(defun baz-ref (n)
(let ((v (load-time-value (load-time-value (vector 1 2 3) t) nil)))
(values (svref v n) v)))

See Also:

compile-file, compile, eval, Section 3.2.2.2 (Minimal Compilation), Section 3.2 (Compilation)

Notes:

load-time-value must appear outside of quoted structure in a “for evaluation” position. In
situations which would appear to call for use of load-time-value within a quoted structure, the
backquote reader macro is probably called for; see Section 2.4.6 (Backquote).

Specifying nil for read-only-p is not a way to force an object to become modifiable if it has already
been made read-only. It is only a way to say that, for an object that is modifiable, this operation
is not intended to make that object read-only.

quote Special Operator

Syntax:

quote object — object

Arguments and Values:
object—an object; not evaluated.

Description:
The quote special operator just returns object.

The consequences are undefined if literal objects (including quoted objects) are destructively
modified.

Evaluation and Compilation 3—-65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(setga 1) — 1

(quote (setq a 3)) — (SETQ A 3)

a — 1

’a — A

’2’a — (QUOTE A)

’22a — (QUOTE (QUOTE A))

(setq a 43) — 43

(list a (cons a 3)) — (43 (43 . 3))
(1ist (quote a) (quote (cons a 3))) — (A (CONS A 3))
1 —1

1T — 1

"foo" — "foo"

"foo" — "foo"

(car ’(a b)) — A

>(car ’(a b)) — (CAR (QUOTE (A B)))
#(car ’(a b)) — #(CAR (QUOTE (A B)))
>#(car ’(a b)) — #(CAR (QUOTE (A B)))

See Also:
Section 3.1 (Evaluation), Section 2.4.3 (Single-Quote), Section 3.2.1 (Compiler Terminology)

Notes:
The textual notation ’object is equivalent to (quote object); see Section 3.2.1 (Compiler Termi-
nology).
Some objects, called self-evaluating objects, do not require quotation by quote. However, symbols
and lists are used to represent parts of programs, and so would not be useable as constant data
in a program without quote. Since quote suppresses the evaluation of these objects, they become
data rather than program.
compller-macro-functlon Accessor
Syntax:

compiler-macro-function name &optional environment — function

(setf (compiler-macro-function name &optional environment) new-function)

Arguments and Values:
name—a function name.

3-66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

environment—an environment object.

function, new-function—a compiler macro function, or nil.

Description:
Accesses the compiler macro function named name, if any, in the environment.

A value of nil denotes the absence of a compiler macro function named name.

Exceptional Situations:

The consequences are undefined if environment is non-nil in a use of setf of
compiler-macro-function.

See Also:

define-compiler-macro, Section 3.2.2.1 (Compiler Macros)

define-compiler-macro Macro

Syntax:

define-compiler-macro name lambda-list [{declaration}* | documentation] {form}*
— name

Arguments and Values:
name—a, function name.

lambda-list—a macro lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:
This is the normal mechanism for defining a compiler macro function. Its manner of definition is
the same as for defmacro; the only differences are:

e The name can be a function name naming any function or macro.

e The expander function is installed as a compiler macro function for the name, rather than
as a macro function.

Evaluation and Compilation 3—-67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-compiler-macro

e The &whole argument is bound to the form argument that is passed to the compiler
macro function. The remaining lambda-list parameters are specified as if this form
contained the function name in the car and the actual arguments in the cdr, but if the
car of the actual form is the symbol funcall, then the destructuring of the arguments is
actually performed using its cddr instead.

e Documentation is attached as a documentation string to name (as kind compiler-macro)
and to the compiler macro function.

e Unlike an ordinary macro, a compiler macro can decline to provide an expansion merely
by returning a form that is the same as the original (which can be obtained by using
&whole).

Examples:

(defun square (x) (expt x 2)) — SQUARE
(define-compiler-macro square (&whole form arg)
(if (atom arg)
‘(expt ,arg 2)
(case (car arg)
(square (if (= (length arg) 2)
‘(expt ,(nth 1 arg) 4)
form))
(expt (if (= (length arg) 3)
(if (numberp (nth 2 arg))
‘(expt ,(nth 1 arg) ,(x 2 (nth 2 arg)))
‘(expt ,(nth 1 arg) (x 2 ,(nth 2 arg))))
form))
(otherwise ‘(expt ,arg 2))))) — SQUARE
(square (square 3)) — 81
(macroexpand ’ (square x)) — (SQUARE X), false
(funcall (compiler-macro-function ’square) ’(square x) nil)
— (EXPT X 2)
(funcall (compiler-macro-function ’square) ’(square (square x)) nil)
— (EXPT X 4)
(funcall (compiler-macro-function ’square) ’(funcall #’square x) nil)
— (EXPT X 2)

(defun distance-positional (x1 y1 x2 y2)
(sqrt (+ (expt (- x2 x1) 2) (expt (- y2 y1) 2))))
— DISTANCE-POSITIONAL
(defun distance (&key (x1 0) (y1 0) (x2 x1) (y2 y1))
(distance-positional x1 yl1 x2 y2))
— DISTANCE
(define-compiler-macro distance (&whole form
&rest key-value-pairs

3-68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-compiler-macro

&key (x1 0 x1-p)
(y1 0 yi-p)
(x2 x1 x2-p)
(y2 y1 y2-p)
&allow-other-keys
&environment env)
(flet ((key (n) (nth (* n 2) key-value-pairs))
(arg (n) (nth (1+ (* n 2)) key-value-pairs))
(simplep (x)
(let ((expanded-x (macroexpand x env)))
(or (constantp expanded-x env)
(symbolp expanded-x)))))
(let ((n (/ (length key-value-pairs) 2)))
(multiple-value-bind (x1s yls x2s y2s others)
(loop for (key) on key-value-pairs by #’cddr
count (eq key ’:x1) into xls
count (eq key ’:yl) into yls
count (eq key ’:x2) into x2s
count (eq key ’:yl1) into y2s
count (not (member key ’(:x1 :x2 :yl :y2)))
into others
finally (return (values x1s yls x2s y2s others)))
(cond ((and (= n 4)
(eq (key 0) :x1)
(eq (key 1) :y1)
(eq (key 2) :x2)
(eq (key 3) :y2))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (if x1-p (and (= x1s 1) (simplep x1)) t)
(if y1-p (and (= y1s 1) (simplep y1)) t)
(if x2-p (and (= x2s 1) (simplep x2)) t)
(if y2-p (and (= y2s 1) (simplep y2)) t)
(zerop others))
‘(distance-positional ,x1 ,yl ,x2 ,y2))
((and (< x1s 2) (< y1ls 2) (< x2s 2) (< y2s 2)
(zerop others))
(let ((temps (loop repeat n collect (gensym))))
‘(let ,(loop for i below n
collect (list (nth i temps) (arg i)))
(distance
,@(loop for i below n
append (list (key i) (nth i temps)))))))
(t form))))))
— DISTANCE
(dolist (form

Evaluation and Compilation 3—-69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

>((distance :x1 (setq x 7) :x2 (decf x) :yl (decf x) :y2 (decf x))
(distance :x1 (setq x 7) :yl (decf x) :x2 (decf x) :y2 (decf x))
(distance :x1 (setq x 7) :yl (incf x))
(distance :x1 (setq x 7) :yl (incf x) :x1 (incf x))
(distance :x1 al :y1 bl :x2 a2 :y2 b2)
(distance :x1 al :x2 a2 :yl bl :y2 b2)
(distance :x1 al :yl bl :zl cl :x2 a2 :y2 b2 :22 c2)))
(print (funcall (compiler-macro-function ’distance) form nil)))
> (LET ((#:G6558 (SETQ X 7))
> (#:G6559 (DECF X))
> (#:G6560 (DECF X))
> (#:G6561 (DECF X)))
> (DISTANCE :X1 #:G6558 :X2 #:G6559 :Y1 #:G6560 :Y2 #:G6561))
> (DISTANCE-POSITIONAL (SETQ X 7) (DECF X) (DECF X) (DECF X))
> (LET ((#:G6567 (SETQ X 7))
> (#:G6568 (INCF X)))
> (DISTANCE :X1 #:G6567 :Y1 #:G6568))
> (DISTANCE :X1 (SETQ X 7) :Y1 (INCF X) :X1 (INCF X))
> (DISTANCE-POSITIONAL A1 B1 A2 B2)
> (DISTANCE-POSITIONAL A1 B1 A2 B2)
> (DISTANCE :X1 A1 :Y1 B1 :Z1 C1 :X2 A2 :Y2 B2 :Z2 C2)
— NIL

See Also:

Notes:

compiler-macro-function, defmacro, documentation, Section 3.4.11 (Syntactic Interaction of
Documentation Strings and Declarations)

The consequences of writing a compiler macro definition for a function in the COMMON-LISP package
are undefined; it is quite possible that in some implementations such an attempt would override
an equivalent or equally important definition. In general, it is recommended that a programmer
only write compiler macro definitions for functions he or she personally maintains—writing a
compiler macro definition for a function maintained elsewhere is normally considered a violation
of traditional rules of modularity and data abstraction.

defmacro Macro

Syntax:

defmacro name lambda-list [{declaration}* | documentation] {form}*
— name

Arguments and Values:

name—a symbol.

3-70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmacro

lambda-list—a macro lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:
Defines name as a macro by associating a macro function with that name in the global environ-
ment. The macro function is defined in the same lexical environment in which the defmacro form
appears.

The parameter variables in lambda-list are bound to destructured portions of the macro call.

The expansion function accepts two arguments, a form and an environment. The expansion
function returns a form. The body of the expansion function is specified by forms. Forms are
executed in order. The value of the last form executed is returned as the expansion of the macro.
The body forms of the expansion function (but not the lambda-list) are implicitly enclosed in a
block whose name is name.

The lambda-list conforms to the requirements described in Section 3.4.4 (Macro Lambda Lists).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

defmacro can be used to redefine a macro or to replace a function definition with a macro
definition.

Recursive expansion of the form returned must terminate, including the expansion of other
macros which are subforms of other forms returned.

The consequences are undefined if the result of fully macroexpanding a form contains any circular
list structure except in literal objects.

If a defmacro form appears as a top level form, the compiler must store the macro definition

at compile time, so that occurrences of the macro later on in the file can be expanded correctly.
Users must ensure that the body of the macro can be evaluated at compile time if it is referenced
within the file being compiled.

Examples:

(defmacro macl (a b) "Macl multiplies and adds"
‘(+ ,a (x ,b 3))) — MAC1
(mac1l 4 5) — 19
(documentation ’macl ’function) — "Macl multiplies and adds"
(defmacro mac2 (&optional (a 2 b) (¢ 3 d) &rest x) ‘’(,a ,b ,c ,d ,x)) — MAC2
(mac2 6) — (6 T 3 NIL NIL)

Evaluation and Compilation 3-71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defmacro

(mac2 6 38) — (6 T3 T (8))
(defmacro mac3 (&whole r a &optional (b 3) &rest x &key c (d a))
“(r ,a ,b ,c ,d ,x)) — MAC3
(mac3 16 :d 8 :c 9 :d 10) — ((MAC3 16 :D8 :C9 :D10) 1698 (:D8 :C9 :D 10))

The stipulation that an embedded destructuring lambda list is permitted only where ordinary
lambda list syntax would permit a parameter name but not a list is made to prevent ambiguity.
For example, the following is not valid:

(defmacro loser (x &optiomnal (a b &rest c) &rest z)

L)

because ordinary lambda list syntax does permit a list following &optional; the list (a b &rest c)
would be interpreted as describing an optional parameter named a whose default value is that of
the form b, with a supplied-p parameter named &rest (not valid), and an extraneous symbol ¢ in
the list (also not valid). An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)

L)

The extra set of parentheses removes the ambiguity. However, the definition is now incorrect
because a macro call such as (loser (car pool)) would not provide any argument form for the
lambda list (a b &rest c), and so the default value against which to match the lambda list would
be nil because no explicit default value was specified. The consequences of this are unspecified
since the empty list, nil, does not have forms to satisfy the parameters a and b. The fully correct
definition would be either

(defmacro loser (x &optional ((a b &rest c) ’(nil nil)) &rest z)
.2

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)
.2

These differ slightly: the first requires that if the macro call specifies a explicitly then it must also
specify b explicitly, whereas the second does not have this requirement. For example,

(loser (car pool) ((+ x 1)))
would be a valid call for the second definition but not for the first.

(defmacro dmla (&whole x) ‘’,x)
(macroexpand ’(dmla)) — (QUOTE (DM1A))
(macroexpand ’(dmla a)) is an error.

(defmacro dmlb (&whole x a &optional b) ‘’(,x ,a ,b))

(macroexpand ’(dmlb)) is an error.
(macroexpand ’(dmlb q)) — (QUOTE ((DM1B Q) Q NIL))

3-72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(macroexpand ’(dmib q r)) — (QUOTE ((DM1B Q R) Q R))
(macroexpand ’(dmlb q r s)) is an error.

(defmacro dm2a (&whole form a b) ‘’(form ,form a ,a b ,b))
(macroexpand ’(dm2a x y)) — (QUOTE (FORM (DM2A X Y) A X B Y))
(dm2a x y) — (FORM (DM2A X Y) A X B Y)

(defmacro dm2b (&whole form a (&whole b (c . d) &optional (e 5))
&body f &environment env)
‘“(,’,form ,,a ,’,b ,’,(macroexpand c env) ,’,d ,’,e ,’,f))
;Note that because backquote is involved, implementations may differ
;slightly in the nature (though not the functionality) of the expansion.
(macroexpand ’(dm2b x1 (((incf x2) x3 x4)) x5 x6))
— (LIST* ’(DM2B X1 (((INCF X2) X3 X4))
X5 X6)
X1
> ((((INCF X2) X3 X4)) (SETQ X2 (+ X2 1)) (X3 X4) 5 (X5 X6))),
T
(let ((x1 5))
(macrolet ((segundo (x) ‘(cadr ,x)))
(dm2b x1 (((segundo x2) x3 x4)) x5 x6)))
— ((DM2B X1 (((SEGUNDO X2) X3 X4)) X5 X6)
5 (((SEGUNDO X2) X3 X4)) (CADR X2) (X3 X4) 5 (X5 X6))

See Also:

define-compiler-macro, destructuring-bind, documentation, macroexpand,
macroexpand-hook, macrolet, macro-function, Section 3.1 (Evaluation), Section 3.2 (Compi-
lation), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

macro-function Accessor

Syntax:

macro-function symbol &optional environment — function

(setf (macro-function symbol &optional environment) new-function)

Arguments and Values:
symbol—a symbol.

environment—an environment object.

Evaluation and Compilation 3-73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

macro-function

function—a macro function or nil.
new-function—a macro function.

Description:
Determines whether symbol has a function definition as a macro in the specified environment.

If so, the macro expansion function, a function of two arguments, is returned. If symbol has
no function definition in the lexical environment environment, or its definition is not a macro,
macro-function returns nil.

It is possible for both macro-function and special-operator-p to return true of symbol. The
macro definition must be available for use by programs that understand only the standard
Common Lisp special forms.

Examples:

(defmacro macfun (x) ’(macro-function ’macfun)) — MACFUN
(not (macro-function ’macfun)) — false

(macrolet ((foo (&environment env)
(if (macro-function ’bar env)
77yes
’’no)))
(1ist (foo)
(macrolet ((bar () :beep))
(f00))))

— (NO YES)

Affected By:

(setf macro-function), defmacro, and macrolet.

Exceptional Situations:
The consequences are undefined if environment is non-nil in a use of setf of macro-function.

See Also:

defmacro, Section 3.1 (Evaluation)

Notes:

setf can be used with macro-function to install a macro as a symbol’s global function definition:
(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, the entire macro call and

3-74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

an environment, and computes the expansion for that call. Performing this operation causes
symbol to have only that macro definition as its global function definition; any previous definition,
whether as a macro or as a function, is lost.

macroexpand, macroexpand-1 Function

Syntax:

macroexpand form &optional env — expansion, expanded-p
macroexpand-1 form &optional env — expansion, expanded-p

Arguments and Values:
form—a form.

env—an environment object. The default is nil.
expansion—a form.
expanded-p—a generalized boolean.

Description:
macroexpand and macroexpand-1 expand macros.

If form is a macro form, then macroexpand-1 expands the macro form call once.

macroexpand repeatedly expands form until it is no longer a macro form. In effect,
macroexpand calls macroexpand-1 repeatedly until the secondary value it returns is nil.

If form is a macro form, then the expansion is a macro expansion and expanded-p is true. Other-
wise, the expansion is the given form and expanded-p is false.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that the form

is a macro form, it obtains an appropriate expansion function for the macro or symbol macro.
The value of *macroexpand-hook* is coerced to a function and then called as a function of three
arguments: the expansion function, the form, and the env. The value returned from this call is
taken to be the expansion of the form.

In addition to macro definitions in the global environment, any local macro definitions established
within env by macrolet or symbol-macrolet are considered. If only form is supplied as an argu-
ment, then the environment is effectively null, and only global macro definitions as established by
defmacro are considered. Macro definitions are shadowed by local function definitions.

Examples:

(defmacro alpha (x y) ‘(beta ,x ,y)) — ALPHA

Evaluation and Compilation 3-75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

macroexpand, macroexpand-1

(defmacro beta (x y) ‘(gamma ,x ,y)) — BETA
(defmacro delta (x y) ‘(gamma ,x ,y)) — EPSILON
(defmacro expand (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand form env)
‘(values ’,expansion ’,expanded-p))) — EXPAND
(defmacro expand-1 (form &environment env)
(multiple-value-bind (expansion expanded-p)
(macroexpand-1 form env)
‘(values ’,expansion ’,expanded-p))) — EXPAND-1

;; Simple examples involving just the global environment
(macroexpand-1 ’(alpha a b)) — (BETA A B), frue

(expand-1 (alpha a b)) — (BETA A B), true

(macroexpand ’(alpha a b)) — (GAMMA A B), true

(expand (alpha a b)) — (GAMMA A B), true

(macroexpand-1 ’not-a-macro) — NOT-A-MACRO, false

(expand-1 not-a-macro) — NOT-A-MACRO, false

(macroexpand ’(not-a-macro a b)) — (NOT-A-MACRO A B), false
(expand (not-a-macro a b)) — (NOT-A-MACRO A B), fake

;; Examples involving lexical environments
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand-1 ’(alpha a b))) — (BETA A B), {rue
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand-1 (alpha a b))) — (DELTA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(macroexpand ’(alpha a b))) — (GAMMA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))

(expand (alpha a b))) — (GAMMA A B), frue
(macrolet ((beta (x y) ‘(epsilon ,x ,y)))

(expand (alpha a b))) — (EPSILON A B), true
(let ((x (list 1 2 3)))

(symbol-macrolet ((a (first x)))

(expand a))) — (FIRST X), true

(let ((x (1ist 1 2 3)))

(symbol-macrolet ((a (first x)))

(macroexpand ’a))) — A, false

(symbol-macrolet ((b (alpha x y)))

(expand-1 b)) — (ALPHA X Y), true
(symbol-macrolet ((b (alpha x y)))

(expand b)) — (GAMMA X Y), true
(symbol-macrolet ((b (alpha x y))

3-76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(a b))
(expand-1 a)) — B, true
(symbol-macrolet ((b (alpha x y))
(a b))
(expand a)) — (GAMMA X Y), true

;; Examples of shadowing behavior
(flet ((beta (x y) (+ x y)))
(expand (alpha a b))) — (BETA A B), true
(macrolet ((alpha (x y) ‘(delta ,x ,y)))
(flet ((alpha (x y) (+ x y)))
(expand (alpha a b)))) — (ALPHA A B), false
(let ((x (list 1 2 3)))
(symbol-macrolet ((a (first x)))
(let ((a x))
(expand a)))) — A, false

Affected By:

defmacro, setf of macro-function, macrolet, symbol-macrolet

See Also:

macroexpand-hook, defmacro, setf of macro-function, macrolet, symbol-macrolet, Section
3.1 (Evaluation)

Notes:
Neither macroexpand nor macroexpand-1 makes any explicit attempt to expand macro forms
that are either subforms of the form or subforms of the expansion. Such expansion might occur
implicitly, however, due to the semantics or implementation of the macro function.
define-symbol-macro Macro
Syntax:
define-symbol-macro symbol expansion
— symbol

Arguments and Values:
symbol—a symbol.

expansion—a. form.

Evaluation and Compilation 3-77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-symbol-macro

Description:
Provides a mechanism for globally affecting the macro expansion of the indicated symbol.

Globally establishes an expansion function for the symbol macro named by symbol. The only
guaranteed property of an expansion function for a symbol macro is that when it is applied to the
form and the environment it returns the correct expansion. (In particular, it is implementation-
dependent whether the expansion is conceptually stored in the expansion function, the environ-
ment, or both.)

Each global reference to symbol (i.e., not shadoweds by a binding for a variable or symbol macro
named by the same symbol) is expanded by the normal macro expansion process; see Section
3.1.2.1.1 (Symbols as Forms). The expansion of a symbol macro is subject to further macro
expansion in the same lexical environment as the symbol macro reference, exactly analogous to
normal macros.

The consequences are unspecified if a special declaration is made for symbol while in the scope of
this definition (i.e., when it is not shadoweds by a binding for a variable or symbol macro named
by the same symbol).

Any use of setq to set the value of the symbol while in the scope of this definition is treated as if
it were a setf. psetq of symbol is treated as if it were a psetf, and multiple-value-setq is treated
as if it were a setf of values.

A binding for a symbol macro can be shadoweds by let or symbol-macrolet.
Examples:

(defvar *things* (list ’alpha ’beta ’gamma)) — *THINGS*

(define-symbol-macro thingl (first *things*)) — THING1
(define-symbol-macro thing2 (second *things#*)) — THING2
(define-symbol-macro thing3 (third *things*)) — THING3

thingl — ALPHA

(setq thingl ’ONE) — ONE

things — (ONE BETA GAMMA)

(multiple-value-setq (thing2 thing3) (values ’two ’three)) — TWO
thing3 — THREE

things — (ONE TWO THREE)

(1ist thing2 (let ((thing2 2)) thing2)) — (TWO 2)

Exceptional Situations:
If symbol is already defined as a global variable, an error of type program-error is signaled.

See Also:

symbol-macrolet, macroexpand

3-78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

symbol- macrolet Special Operator

Syntax:

symbol-macrolet ({(symbol expansion)}*) {declaration}* {form}*
— {result}*

Arguments and Values:
symbol—a symbol.

expansion—a, form.

declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description:

symbol-macrolet provides a mechanism for affecting the macro expansion environment for
symbols.

symbol-macrolet lexically establishes expansion functions for each of the symbol macros named
by symbols. The only guaranteed property of an expansion function for a symbol macro is that
when it is applied to the form and the environment it returns the correct expansion. (In particu-
lar, it is implementation-dependent whether the expansion is conceptually stored in the expansion
function, the environment, or both.)

Each reference to symbol as a variable within the lexical scope of symbol-macrolet is expanded
by the normal macro expansion process; see Section 3.1.2.1.1 (Symbols as Forms). The expansion
of a symbol macro is subject to further macro expansion in the same lexical environment as the
symbol macro invocation, exactly analogous to normal macros.

Exactly the same declarations are allowed as for let with one exception: symbol-macrolet signals
an error if a special declaration names one of the symbols being defined by symbol-macrolet.

When the forms of the symbol-macrolet form are expanded, any use of setq to set the value of
one of the specified variables is treated as if it were a setf. psetq of a symbol defined as a symbol
macro is treated as if it were a psetf, and multiple-value-setq is treated as if it were a setf of
values.

The use of symbol-macrolet can be shadowed by let. In other words, symbol-macrolet only
substitutes for occurrences of symbol that would be in the scope of a lexical binding of symbol
surrounding the forms.

Evaluation and Compilation 3-79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

;53 The following is equivalent to
5 (list ’foo (let ((x ’bar)) x)),
;55 not
5 (list ’foo (let ((’foo ’bar)) ’foo))
(symbol-macrolet ((x ’foo))
(list x (let ((x ’bar)) x)))
— (foo bar)

t
e (foo foo)

(symbol-macrolet ((x ’(foo x)))
(list x))
— ((FOO X))

Exceptional Situations:
If an attempt is made to bind a symbol that is defined as a global variable, an error of type
program-error is signaled.

If declaration contains a special declaration that names one of the symbols being bound by
symbol-macrolet, an error of type program-error is signaled.

See Also:

with-slots, macroexpand

Notes:

The special form symbol-macrolet is the basic mechanism that is used to implement with-slots.

If a symbol-macrolet form is a top level form, the forms are also processed as top level forms.
See Section 3.2.3 (File Compilation).

xmacroexpand-hook: Variable

Value Type:
a designator for a function of three arguments: a macro function, a macro form, and an environ-
ment object.

Initial Value:
a designator for a function that is equivalent to the function funcall, but that might have addi-
tional implementation-dependent side-effects.

3—-80 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Used as the expansion interface hook by macroexpand-1 to control the macro expansion process.
When a macro form is to be expanded, this function is called with three arguments: the macro
function, the macro form, and the environment in which the macro form is to be expanded. The
environment object has dynamic extent; the consequences are undefined if the environment object
is referred to outside the dynamic extent of the macro expansion function.

Examples:

(defun hook (expander form env)
(format t "Now expanding: “S~%" form)
(funcall expander form env)) — HOOK
(defmacro machook (x y) ‘(/ (+ ,x ,y) 2)) — MACHOOK
(macroexpand ’(machook 1 2)) — (/ (+ 1 2) 2), true
(let ((*macroexpand-hook* #’hook)) (macroexpand ’(machook 1 2)))
> Now expanding (MACHOOK 1 2)
— (/ (+12)2), true

See Also:
macroexpand, macroexpand-1, funcall, Section 3.1 (Evaluation)
Notes:
The net effect of the chosen initial value is to just invoke the macro function, giving it the macro
form and environment as its two arguments.
Users or user programs can assign this variable to customize or trace the macro expansion
mechanism. Note, however, that this variable is a global resource, potentially shared by multiple
programs; as such, if any two programs depend for their correctness on the setting of this variable,
those programs may not be able to run in the same Lisp image. For this reason, it is frequently
best to confine its uses to debugging situations.
Users who put their own function into *macroexpand-hook* should consider saving the previous
value of the hook, and calling that value from their own.
proclaim Function
Syntax:

proclaim declaration-specifier — implementation-dependent

Arguments and Values:

declaration-specifier—a declaration specifier.

Evaluation and Compilation 3—-81

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

proclaim

Description:

Establishes the declaration specified by declaration-specifier in the global environment.

Such a declaration, sometimes called a global declaration or a proclamation, is always in force
unless locally shadowed.

Names of variables and functions within declaration-specifier refer to dynamic variables and global
function definitions, respectively.

Figure 3-22 shows a list of declaration identifiers that can be used with proclaim.

declaration inline optimize type
ftype notinline special

Figure 3—22. Global Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun declare-variable-types-globally (type vars)
(proclaim ‘(type ,type ,@vars))
type)

;; Once this form is executed, the dynamic variable *TOLERANCEx*
;; must always contain a float.
(declare-variable-types-globally ’float ’(*tolerancex*))
— FLOAT

See Also:

Notes:

declaim, declare, Section 3.2 (Compilation)

Although the ezxecution of a proclaim form has effects that might affect compilation, the compiler
does not make any attempt to recognize and specially process proclaim forms. A proclamation
such as the following, even if a top level form, does not have any effect until it is executed:

(proclaim ’ (special *x*))
If compile time side effects are desired, eval-when may be useful. For example:

(eval-when (:execute :compile-toplevel :load-toplevel)
(proclaim ’(special *x*)))

In most such cases, however, it is preferrable to use declaim for this purpose.

3—-82 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Since proclaim forms are ordinary function forms, macro forms can expand into them.

declaim Macro

Syntax:

declaim {declaration-specifier}* — implementation-dependent

Arguments and Values:
declaration-specifier—a declaration specifier; not evaluated.

Description:
Establishes the declarations specified by the declaration-specifiers.

If a use of this macro appears as a top level form in a file being processed by the file compiler,
the proclamations are also made at compile-time. As with other defining macros, it is unspecified
whether or not the compile-time side-effects of a declaim persist after the file has been compiled.

Examples:

See Also:

declare, proclaim

declare Symbol

Syntax:

declare {declaration-specifier}*

Arguments:
declaration-specifier—a declaration specifier; not evaluated.

Description:

A declare expression, sometimes called a declaration, can occur only at the beginning of the
bodies of certain forms; that is, it may be preceded only by other declare expressions, or by a
documentation string if the context permits.

A declare expression can occur in a lambda expression or in any of the forms listed in Figure
3-23.

Evaluation and Compilation 3-83

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

declare

defgeneric
define-compiler-macro
define-method-combination
define-setf-expander
defmacro

defmethod

defsetf

deftype

defun
destructuring-bind

do

do*

do-all-symbols

do-external-symbols
do-symbols

dolist

dotimes

flet

handler-case

labels

let

let*

locally

macrolet
multiple-value-bind
pprint-logical-block

prog
prog*

restart-case
symbol-macrolet
with-accessors
with-hash-table-iterator
with-input-from-string
with-open-file
with-open-stream
with-output-to-string
with-package-iterator
with-slots

Figure 3-23. Standardized Forms In Which Declarations Can Occur

A declare expression can only occur where specified by the syntax of these forms. The conse-
quences of attempting to evaluate a declare ezpression are undefined. In situations where such
expressions can appear, explicit checks are made for their presence and they are never actually
evaluated; it is for this reason that they are called “declare expressions” rather than “declare
forms.”

Macro forms cannot expand into declarations; declare expressions must appear as actual subex-
pressions of the form to which they refer.

Figure 3-24 shows a list of declaration identifiers that can be used with declare.

dynamic-extent

ftype
ignorable

ignore
inline
notinline

optimize
special
type

Figure 3—24. Local Declaration Specifiers

An implementation is free to support other (implementation-defined) declaration identifiers as
well.

Examples:

(defun nonsense (k x z)

(foo z x)
(let ((j (foo k x))
(x (x k¥ k)))

;First call to foo
;Second call to foo

(declare (inline foo) (special x z))

(foo x j 2)))

Programming Language—Common Lisp

;Third call to foo

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In this example, the inline declaration applies only to the third call to foo, but not to the first

or second ones. The special declaration of x causes let to make a dynamic binding for x, and
causes the reference to x in the body of let to be a dynamic reference. The reference to x in the
second call to foo is a local reference to the second parameter of nonsense. The reference to x in
the first call to foo is a local reference, not a special one. The special declaration of z causes the
reference to z in the third call to foo to be a dynamic reference; it does not refer to the parameter
to nonsense named z, because that parameter binding has not been declared to be special. (The
special declaration of z does not appear in the body of defun, but in an inner form, and therefore
does not affect the binding of the parameter.)

Exceptional Situations:
The consequences of trying to use a declare expression as a form to be evaluated are undefined.

See Also:

proclaim, Section 4.2.3 (Type Specifiers), declaration, dynamic-extent, ftype, ignorable,
ignore, inline, notinline, optimize, type

ignore, ignorable Declaration

Syntax:

(ignore {var | (function fn)}*)
(ignorable {var | (function fn)}*)

Arguments:
var—a variable name.

fn-—a function name.

Valid Context:

declaration

Binding Types Affected:

variable, function

Description:

The ignore and ignorable declarations refer to for-value references to variable bindings for the
vars and to function bindings for the fns.

An ignore declaration specifies that for-value references to the indicated bindings will not occur
within the scope of the declaration. Within the scope of such a declaration, it is desirable for a
compiler to issue a warning about the presence of either a for-value reference to any var or fn, or
a special declaration for any var.

Evaluation and Compilation 3—-85

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

An ignorable declaration specifies that for-value references to the indicated bindings might or
might not occur within the scope of the declaration. Within the scope of such a declaration, it is
not desirable for a compiler to issue a warning about the presence or absence of either a for-value
reference to any var or fn, or a special declaration for any var.

When not within the scope of a ignore or ignorable declaration, it is desirable for a compiler
to issue a warning about any var for which there is neither a for-value reference nor a special
declaration, or about any fn for which there is no for-value reference.

Any warning about a “used” or “unused” binding must be of type style-warning, and may not
affect program semantics.

The stream variables established by with-open-file, with-open-stream, with-input-from-string,
and with-output-to-string, and all iteration variables are, by definition, always “used”. Using
(declare (ignore v)), for such a wariable v has unspecified consequences.

See Also:

declare

dynamic-extent Declaration

Syntax:

(dynamic-extent [{var}* | (function fn)*])

Arguments:
var—a variable name.

fn-—a function name.

Valid Context:

declaration

Binding Types Affected:

variable, function

Description:

In some containing form, F, this declaration asserts for each var; (which need not be bound by
F), and for each value v;; that var; takes on, and for each object x;;; that is an otherwise inacces-
sible part of v;; at any time when v;; becomes the value of var;, that just after the execution of

F terminates, x;;1 is either inaccessible (if F established a binding for var;) or still an otherwise
inaccessible part of the current value of var; (if F did not establish a binding for var;). The same
relation holds for each fn;, except that the bindings are in the function namespace.

3-86 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dynamic-extent

The compiler is permitted to use this information in any way that is appropriate to the imple-
mentation and that does not conflict with the semantics of Common Lisp.

dynamic-extent declarations can be free declarations or bound declarations.

The vars and fns named in a dynamic-extent declaration must not refer to symbol macro or
macro bindings.

Examples:
Since stack allocation of the initial value entails knowing at the object’s creation time that the
object can be stack-allocated, it is not generally useful to make a dynamic-extent declaration
for wariables which have no lexically apparent initial value. For example, it is probably useful to
write:

(defun £ ()
(let ((x (1ist 1 2 3)))
(declare (dynamic-extent x))

o))

This would permit those compilers that wish to do so to stack allocate the list held by the local
variable x. It is permissible, but in practice probably not as useful, to write:

(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ (O (g (list 1 2 3)))

Most compilers would probably not stack allocate the argument to g in £ because it would be
a modularity violation for the compiler to assume facts about g from within £. Only an im-
plementation that was willing to be responsible for recompiling £ if the definition of g changed
incompatibly could legitimately stack allocate the list argument to g in f.

Here is another example:

(declaim (inline g))
(defun g (x) (declare (dynamic-extent x)) ...)
(defun £ (O (g (Qist 1 2 3)))

(defun £ O
(flet ((g (x) (declare (dynamic-extent x)) ...))
(g (list 1 2 3))))

In the previous example, some compilers might determine that optimization was possible and
others might not.

A variant of this is the so-called “stack allocated rest list” that can be achieved (in implementa-
tions supporting the optimization) by:

(defun f (&rest x)

Evaluation and Compilation 3-87

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dynamic-extent

(declare (dynamic-extent x))

L)

Note that although the initial value of x is not explicit, the £ function is responsible for assem-
bling the list x from the passed arguments, so the £ function can be optimized by the compiler to
construct a stack-allocated list instead of a heap-allocated list in implementations that support
such.

In the following example,

(let ((x (1list ’al ’bl ’cl))
(y (cons ’a2 (cons ’b2 (cons ’c2 nil)))))
(declare (dynamic-extent x y))

L)

The otherwise inaccessible parts of x are three conses, and the otherwise inaccessible parts of y
are three other conses. None of the symbols a1, b1, c1, a2, b2, c¢2, or nil is an otherwise inacces-
sible part of x or y because each is interned and hence accessible by the package (or packages) in
which it is interned. However, if a freshly allocated uninterned symbol had been used, it would
have been an otherwise inaccessible part of the list which contained it.

;; In this example, the implementation is permitted to stack allocate
;; the list that is bound to X.
(let ((x (list 1 2 3)))

(declare (dynamic-extent x))

(print x)
:done)
> (12 3)
— :DONE

;; In this example, the list to be bound to L can be stack-allocated.
(defun zap (x y 2z)
(do ((1 (1list x y z) (cdr 1)))
((null 1))
(declare (dynamic-extent 1))
(prinl (car 1)))) — ZAP
(zap 1 2 3)
> 123
— NIL

;; Some implementations might open-code LIST-ALL-PACKAGES in a way
;; that permits using stack allocation of the list to be bound to L.
(do ((1 (list-all-packages) (cdr 1)))
((null 1))
(declare (dynamic-extent 1))
(let ((name (package-name (car 1))))
(when (string-search "COMMON-LISP" name) (print name))))

3—-88 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

> "COMMON-LISP"
> "COMMON-LISP-USER"
— NIL

;; Some implementations might have the ability to stack allocate
;; rest lists. A declaration such as the following should be a cue
;3 to such implementations that stack-allocation of the rest list
;; would be desirable.
(defun add (&rest x)

(declare (dynamic-extent x))

(apply #’+ x)) — ADD
(add 1 23) — 6

(defun zap (n m)
;; Computes (RANDOM (+ M 1)) at relative speed of roughly O(N).
;; It may be slow, but with a good compiler at least it
;; doesn’t waste much heap storage. :-}
(let ((a (make-array n)))
(declare (dynamic-extent a))
(dotimes (i n)
(declare (dynamic-extent i))
(setf (aref a i) (random (+ i 1))))
(aref a m))) — ZAP
(< (zap 5 3) 3) — true

The following are in error, since the value of x is used outside of its extent:

(length (list (let ((x (list 1 2 3))) ; Imnvalid
(declare (dynamic-extent x))

x)))

(progn (let ((x (list 1 2 3))) ; Invalid
(declare (dynamic-extent x))

x)
nil)
See Also:
declare
Notes:
The most common optimization is to stack allocate the initial value of the objects named by the
vars.

It is permissible for an implementation to simply ignore this declaration.

Evaluation and Compilation 3-89

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

type Declaration

Syntax:
(type typespec {var}*)

(typespec {var}*)

Arguments:
typespec—a type specifier.

var—a variable name.

Valid Context:

declaration or proclamation

Binding Types Affected:

variable

Description:
Affects only variable bindings and specifies that the vars take on values only of the specified
typespec. In particular, values assigned to the variables by setq, as well as the initial values of the
vars must be of the specified typespec. type declarations never apply to function bindings (see

ftype).

A type declaration of a symbol defined by symbol-macrolet is equivalent to wrapping a the
expression around the expansion of that symbol, although the symbol’s macro expansion is not
actually affected.

The meaning of a type declaration is equivalent to changing each reference to a variable (var)
within the scope of the declaration to (the typespec var), changing each expression assigned to
the variable (new-value) within the scope of the declaration to (the typespec new-value), and
executing (the typespec var) at the moment the scope of the declaration is entered.

A type declaration is valid in all declarations. The interpretation of a type declaration is as
follows:

1. During the execution of any reference to the declared variable within the scope of the
declaration, the consequences are undefined if the value of the declared variable is not of
the declared type.

2. During the execution of any setq of the declared variable within the scope of the declara-
tion, the consequences are undefined if the newly assigned value of the declared variable is

not of the declared type.

3. At the moment the scope of the declaration is entered, the consequences are undefined if

3-90 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

the value of the declared variable is not of the declared type.
A type declaration affects only variable references within its scope.

If nested type declarations refer to the same variable, then the value of the variable must be a
member of the intersection of the declared types.

If there is a local type declaration for a dynamic variable, and there is also a global type procla-
mation for that same variable, then the value of the variable within the scope of the local declara-
tion must be a member of the intersection of the two declared types.

type declarations can be free declarations or bound declarations.

A symbol cannot be both the name of a type and the name of a declaration. Defining a symbol
as the name of a class, structure, condition, or type, when the symbol has been declared as a
declaration name, or vice versa, signals an error.

Within the lexical scope of an array type declaration, all references to array elements are as-
sumed to satisfy the expressed array element type (as opposed to the upgraded array element
type). A compiler can treat the code within the scope of the array type declaration as if each
access of an array element were surrounded by an appropriate the form.

Examples:

(defun f (x y)
(declare (type fixnum x y))
(et ((z (+ x)
(declare (type fixnum z))
z)) — F
(£f12) — 3
;3 The previous definition of F is equivalent to
(defun £ (x y)
;3 This declaration is a shorthand form of the TYPE declaration
(declare (fixnum x y))
;3 To declare the type of a return value, it’s not necessary to
;; create a named variable. A THE special form can be used instead.
(the fixnum (+ x y))) — F
(f12) — 3

(defvar *one-array* (make-array 10 :element-type ’(signed-byte 5)))
(defvar *another-array* (make-array 10 :element-type ’(signed-byte 8)))

(defun frob (an-array)
(declare (type (array (signed-byte 5) 1) an-array))
(setf (aref an-array 1) 31)
(setf (aref an-array 2) 127)

Evaluation and Compilation 3-91

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type

(setf (aref an-array 3) (x 2 (aref an-array 3)))
(let ((foo 0))

(declare (type (signed-byte 5) foo))

(setf foo (aref an-array 0))))

(frob *one-array*)
(frob *another-array*)

The above definition of frob is equivalent to:

(defun frob (an-array)
(setf (the (signed-byte 5) (aref an-array 1)) 31)
(setf (the (signed-byte 5) (aref an-array 2)) 127)
(setf (the (signed-byte 5) (aref an-array 3))
(* 2 (the (signed-byte 5) (aref an-array 3))))

(let ((foo 0))

(declare (type (signed-byte 5) foo))

(setf foo (the (signed-byte 5) (aref an-array 0)))))

Given an implementation in which fiznums are 29 bits but fixnum arrays are upgraded to signed
32-bit arrays, the following could be compiled with all fiznum arithmetic:

(defun bump-counters (counters)
(declare (type (array fixnum *) bump-counters))
(dotimes (i (length counters))
(incf (aref counters i))))

See Also:

declare, declaim, proclaim

Notes:
(typespec {var}*) is an abbreviation for (type typespec {var}*).

A type declaration for the arguments to a function does not necessarily imply anything about the
type of the result. The following function is not permitted to be compiled using implementation-
dependent fixnum-only arithmetic:

(defun f (x y) (declare (fixnum x y)) (+ x y))

To see why, consider (f most-positive-fixnum 1). Common Lisp defines that F must return a
bignum here, rather than signal an error or produce a mathematically incorrect result. If you have
special knowledge such “fiznum overflow” cases will not come up, you can declare the result value
to be in the fiznum range, enabling some compilers to use more efficient arithmetic:

(defun £ (x y)
(declare (fixnum x y))
(the fixnum (+ x y)))

3-92 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Note, however, that in the three-argument case, because of the possibility of an implicit interme-
diate value growing too large, the following will not cause implementation-dependent fixnum-only
arithmetic to be used:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ x y 2)))

To see why, consider (f most-positive-fixnum 1 -1). Although the arguments and the result

are all fiznums, an intermediate value is not a fiznum. If it is important that implementation-
dependent fixnum-only arithmetic be selected in implementations that provide it, consider writing
something like this instead:

(defun f (x y)
(declare (fixnum x y z))
(the fixnum (+ (the fixnum (+ x y)) 2)))

inline, notinline Declaration

Syntax:

(inline {function-name}*)
(notinline {function-name}*)

Arguments:
function-name—a, function name.

Valid Context:

declaration or proclamation

Binding Types Affected:

function

Description:
inline specifies that it is desirable for the compiler to produce inline calls to the functions named
by function-names; that is, the code for a specified function-name should be integrated into the
calling routine, appearing “in line” in place of a procedure call. A compiler is free to ignore this
declaration. inline declarations never apply to variable bindings.

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

Evaluation and Compilation 3-93

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

inline, notinline

While no conforming implementation is required to perform inline expansion of user-defined
functions, those implementations that do attempt to recognize the following paradigm:

To define a function £ that is not inline by default but for which (declare (inline £)) will make
f be locally inlined, the proper definition sequence is:

(declaim (inline f))
(defun f ...)
(declaim (notinline f))

The inline proclamation preceding the defun form ensures that the compiler has the opportunity
save the information necessary for inline expansion, and the notinline proclamation following the
defun form prevents £ from being expanded inline everywhere.

notinline specifies that it is undesirable to compile the functions named by function-names in-
line. A compiler is not free to ignore this declaration; calls to the specified functions must be
implemented as out-of-line subroutine calls.

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition.

In the presence of a compiler macro definition for function-name, a notinline declaration prevents
that compiler macro from being used. An inline declaration may be used to encourage use of
compiler macro definitions. inline and notinline declarations otherwise have no effect when the
lexically visible definition of function-name is a macro definition.

inline and notinline declarations can be free declarations or bound declarations. inline and
notinline declarations of functions that appear before the body of a flet or labels form that
defines that function are bound declarations. Such declarations in other contexts are free declara-
tions.

Examples:

;; The globally defined function DISPATCH should be open-coded,
;; if the implementation supports inlining, unless a NOTINLINE
;3 declaration overrides this effect.
(declaim (inline dispatch))
(defun dispatch (x) (funcall (get (car x) ’dispatch) x))
;; Here is an example where inlining would be encouraged.
(defun top-level-1 () (dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(defun top-level-2 ()

(declare (notinline dispatch))

(dispatch (read-command)))
;; Here is an example where inlining would be prohibited.
(declaim (notinline dispatch))
(defun top-level-3 () (dispatch (read-command)))

3-94 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Here is an example where inlining would be encouraged.
(defun top-level-4 ()

(declare (inline dispatch))

(dispatch (read-command)))

See Also:

declare, declaim, proclaim

ftype Declaration

Syntax:
(ftype type {function-name}*)

Arguments:
function-name—a function name.

type—a type specifier.
Valid Context:

declaration or proclamation

Binding Types Affected:

Sfunction

Description:

Specifies that the functions named by function-names are of the functional type type. For exam-
ple:

(declare (ftype (function (integer list) t) ith)
(ftype (function (number) float) sine cosine))

If one of the functions mentioned has a lexically apparent local definition (as made by flet
or labels), then the declaration applies to that local definition and not to the global function
definition. ftype declarations never apply to variable bindings (see type).

The lexically apparent bindings of function-names must not be macro definitions. (This is because
ftype declares the functional definition of each function name to be of a particular subtype of
function, and macros do not denote functions.)

ftype declarations can be free declarations or bound declarations. ftype declarations of func-
tions that appear before the body of a flet or labels form that defines that function are bound
declarations. Such declarations in other contexts are free declarations.

Evaluation and Compilation 3-95

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

See Also:

declare, declaim, proclaim

declaration

Declaration

Syntax:

(declaration {name}*)

Arguments:
name—a, symbol.

Valid Context:

proclamation only

Description:

Advises the compiler that each name is a valid but potentially non-standard declaration name.
The purpose of this is to tell one compiler not to issue warnings for declarations meant for

another compiler or other program processor.

Examples:

(declaim (declaration author target-language target-machine))
(declaim (target-language ada))
(declaim (target-machine IBM-650))

(defun strangep (x)

(declare (author "Harry Tweeker"))
(member x ’(strange weird odd peculiar)))

See Also:

declaim, proclaim

3-96 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

optimize

optimize

Declaration

Syntax:
(optimize {quality | (quality value)}*)

Arguments:
quality—an optimize quality.

value—one of the integers 0, 1, 2, or 3.

Valid Context:

declaration or proclamation

Description:

Advises the compiler that each quality should be given attention according to the specified
corresponding value. Each quality must be a symbol naming an optimize quality; the names and
meanings of the standard optimize qualities are shown in Figure 3-25.

Name

Meaning

compilation-speed
debug

safety

space

speed

speed of the compilation process
ease of debugging

run-time error checking

both code size and run-time space
speed of the object code

Figure 3—25. Optimize qualities

There may be other, implementation-defined optimize qualities.

A value 0 means that the corresponding quality is totally unimportant, and 3 that the quality is
extremely important; 1 and 2 are intermediate values, with 1 the neutral value. (quality 3) can be

abbreviated to quality.

Note that code which has the optimization (safety 3), or just safety, is called safe code.

The consequences are unspecified if a quality appears more than once with different values.

Examples:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)

(hairy-setup x)
(do ((4 0 (+1i 1))
(z x (cdr 2)))

Evaluation and Compilation 3-97

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

((aull z))
;3 This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum i))

)
See Also:
declare, declaim, proclaim, Section 3.3.4 (Declaration Scope)
Notes:
An optimize declaration never applies to either a variable or a function binding. An optimize
declaration can only be a free declaration. For more information, see Section 3.3.4 (Declaration
Scope).
spec1a1 Declaration
Syntax:
(special {var}*)
Arguments:

var—a symbol.

Valid Context:

declaration or proclamation

Binding Types Affected:

variable

Description:
Specifies that all of the vars named are dynamic. This specifier affects variable bindings and
affects references. All variable bindings affected are made to be dynamic bindings, and affected
variable references refer to the current dynamic binding. For example:

(defun hack (thing *mod*) ;The binding of the parameter
(declare (special *mod*)) ; *mod* is visible to hackl,
(hackl (car thing))) ; but not that of thing.

(defun hackl (arg)
(declare (special *mod*)) ;Declare references to *mod*
;within hackl to be special.
(if (atom arg) *mod*
(cons (hackl (car arg)) (hackl (cdr arg)))))

3-98 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

special

A special declaration does not affect inner bindings of a var; the inner bindings implicitly shadow
a special declaration and must be explicitly re-declared to be special. special declarations never
apply to function bindings.

special declarations can be either bound declarations, affecting both a binding and references, or
free declarations, affecting only references, depending on whether the declaration is attached to a
variable binding.

When used in a proclamation, a special declaration specifier applies to all bindings as well as to
all references of the mentioned variables. For example, after

(declaim (special x))
then in a function definition such as
(defun example (x) ...)

the parameter x is bound as a dynamic variable rather than as a lexical variable.

Examples:
(defun declare-eg (y) ;this y is special
(declare (special y))
(et ((y t)) ;this y is lexical

(1list y
(locally (declare (special y)) y)))) ;this y refers to the
;special binding of y
— DECLARE-EG
(declare-eg nil) — (T NIL)

(setf (symbol-value ’x) 6)

(defun foo (x) ;a lexical binding of x

(print x)

(let ((x (1+ x))) ;a special binding of x
(declare (special x)) ;and a lexical reference
(bar))

1+ x))

(defun bar ()
(print (locally (declare (special x))
x)))
(foo 10)
> 10
> 11
— 11

(setf (symbol-value ’x) 6)
(defun bar (x y) ; [1] 1st occurrence of x
(let ((old-x x) ;[2] 2nd occurrence of x -- same as 1st occurrence

Evaluation and Compilation 3-99

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(x y)) ; [3] 3rd occurrence of x
(declare (special x))
(list old-x x)))
(bar ’first ’second) — (FIRST SECOND)

(defun few (x &optional (y *foo*))
(declare (special *foo*))

L)

The reference to *foo* in the first line of this example is not special even though there is a

special declaration in the second line.

(declaim (special prosp)) — implementation-dependent
(setq prosp 1 reg 1) — 1

(let ((prosp 2) (reg 2)) ;the binding of prosp is special
(set ’prosp 3) (set ’reg 3) ;due to the preceding proclamation,
(list prosp reg)) ;whereas the variable reg is lexical

— (3 2)

(list prosp reg) — (1 3)

(declaim (special x)) ;x is always special.
(defun example (x y)
(declare (special y))
(let ((y 3) (x (*x x 2)))
(print (+ y (locally (declare (special y)) y)))

(let ((y 4)) (declare (special y)) (foo x)))) — EXAMPLE

In the contorted code above, the outermost and innermost bindings of y are dynamic, but the
middle binding is lexical. The two arguments to + are different, one being the value, which is 3, of
the lexical variable y, and the other being the value of the dynamic variable named y (a binding
of which happens, coincidentally, to lexically surround it at an outer level). All the bindings of x
and references to x are dynamic, however, because of the proclamation that x is always special.

See Also:

defparameter, defvar

locally

Special Operator

Syntax:

locally {declaration}* {form}* — {result}*

Arguments and Values:
Declaration—a declare expression; not evaluated.

3-100 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

locally

forms—an implicit progn.
results—the values of the forms.

Description:

Sequentially evaluates a body of forms in a lexical environment where the given declarations have

effect.
Examples:

(defun sample-function (y) ;this y is regarded as special
(declare (special y))
(let ((y t)) ;this y is regarded as lexical
(list y
(locally (declare (special y))
;; this next y is regarded as special
¥))))
— SAMPLE-FUNCTION
(sample-function nil) — (T NIL)
(setq x ’(1 23) y ’(4 . 5)) — (4.5)

;55 The following declarations are not notably useful in specific.

;55 They just offer a sample of valid declaration syntax using LOCALLY.

(locally (declare (inline floor) (notinline car cdr))
(declare (optimize space))
(floor (car x) (cdr y))) — 0, 1

;35 This example shows a definition of a function that has a particular set

;53 of OPTIMIZE settings made locally to that definitionm.
(locally (declare (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w)))
— FROB

;55 This is like the previous example, except that the optimize settings
;35 remain in effect for subsequent definitions in the same compilation unit.

(declaim (optimize (safety 3) (space 3) (speed 0)))
(defun frob (w x y &optional (z (foo x y)))
(mumble x y z w))
— FROB

See Also:

declare

Evaluation and Compilation 3-101

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

The special declaration may be used with locally to affect references to, rather than bindings of,
variables.

If a locally form is a top level form, the body forms are also processed as top level forms. See
Section 3.2.3 (File Compilation).

the Special Operator

Syntax:

the value-type form — {result}*

Arguments and Values:
value-type—a type specifier; not evaluated.

form—a form; evaluated.

results—the values resulting from the evaluation of form. These values must conform to the type
supplied by value-type; see below.

Description:

the specifies that the valuesi, returned by form are of the types specified by value-type. The
consequences are undefined if any result is not of the declared type.

It is permissible for form to yield a different number of values than are specified by value-type,
provided that the values for which types are declared are indeed of those types. Missing values are
treated as nil for the purposes of checking their types.

Regardless of number of values declared by value-type, the number of values returned by the the
special form is the same as the number of values returned by form.

Examples:

(the symbol (car (list (gensym)))) — #:G9876
(the fixnum (+ 5 7)) — 12
(the (values) (truncate 3.2 2)) — 1, 1.2
(the integer (truncate 3.2 2)) — 1, 1.2
(the (values integer) (truncate 3.2 2)) — 1, 1.2
(the (values integer float) (truncate 3.2 2)) — 1, 1.2
(the (values integer float symbol) (truncate 3.2 2)) — 1, 1.2
(the (values integer float symbol t null list)
(truncate 3.2 2)) — 1, 1.2

(let ((1 100))

(declare (fixnum i))

3-102 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(the fixnum (1+ i))) — 101
(let* ((x (1ist ’a ’b ’c))
(y 5)
(setf (the fixnum (car x)) y)
x) — (56 B C)

Exceptional Situations:

The consequences are undefined if the values yielded by the form are not of the type specified by
value-type.

See Also:

values

Notes:

The values type specifier can be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the-string-table))

setf can be used with the type declarations. In this case the declaration is transferred to the form
that specifies the new value. The resulting setf form is then analyzed.

special-operator-p Function

Syntax:

special-operator-p symbol — generalized-boolean

Arguments and Values:
symbol—a symbol.

generalized-boolean—a generalized boolean.

Description:
Returns true if symbol is a special operator; otherwise, returns false.

Examples:
(special-operator-p ’if) — f{rue

(special-operator-p ’car) — false
(special-operator-p ’one) — false

Evaluation and Compilation 3-103

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:
Should signal type-error if its argument is not a symbol.

Notes:
Historically, this function was called special-form-p. The name was finally declared a misnomer
and changed, since it returned true for special operators, not special forms.
constantp Function
Syntax:

constantp form &optional environment — generalized-boolean

Arguments and Values:
form—a form.

environment—an environment object. The default is nil.

generalized-boolean—a generalized boolean.

Description:
Returns true if form can be determined by the implementation to be a constant form in the
indicated environment; otherwise, it returns false indicating either that the form is not a constant
form or that it cannot be determined whether or not form is a constant form.

The following kinds of forms are considered constant forms:

o Self-evaluating objects (such as numbers, characters, and the various kinds of arrays) are
always considered constant forms and must be recognized as such by constantp.

e (Constant variables, such as keywords, symbols defined by Common Lisp as constant (such
as nil, t, and pi), and symbols declared as constant by the user in the indicated environ-
ment using defconstant are always considered constant forms and must be recognized as
such by constantp.

e quote forms are always considered constant forms and must be recognized as such by
constantp.

e An implementation is permitted, but not required, to detect additional constant forms. If
it does, it is also permitted, but not required, to make use of information in the environ-
ment. Examples of constant forms for which constantp might or might not return true
are: (sqrt pi), (+ 3 2), (length ’(a b ¢)), and (let ((x 7)) (zerop x)).

3-104 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

constantp

If an implementation chooses to make use of the environment information, such actions as expand-
ing macros or performing function inlining are permitted to be used, but not required; however,
expanding compiler macros is not permitted.

Examples:

(constantp 1) — ftrue

(constantp ’temp) — false

(constantp ’’temp)) — true

(defconstant this-is-a-constant ’never-changing) — THIS-IS-A-CONSTANT
(constantp ’this-is-a-constant) — {rue

(constantp "temp") — frue

(setq a 6) — 6

(constantp a) — {true

(constantp ’(sin pi)) — implementation-dependent

(constantp ’(car ’(x))) — implementation-dependent

(constantp ’(eql x x)) — implementation-dependent

(constantp ’(typep x ’nil)) — implementation-dependent

(constantp ’(typep x ’t)) — implementation-dependent

(constantp ’(values this-is-a-constant)) — implementation-dependent
(constantp ’(values ’x ’y)) — implementation-dependent

(constantp ’(let ((a ’(a b ¢))) (+ (length a) 6))) — implementation-dependent

Affected By:

The state of the global environment (e.g., which symbols have been declared to be the names of
constant variables).

See Also:

defconstant

Evaluation and Compilation 3-105

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

3-106 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

4. Types and Classes

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Types and Classes iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.1 Introduction

A type is a (possibly infinite) set of objects. An object can belong to more than one type. Types
are never explicitly represented as objects by Common Lisp. Instead, they are referred to indi-
rectly by the use of type specifiers, which are objects that denote types.

New types can be defined using deftype, defstruct, defclass, and define-condition.

The function typep, a set membership test, is used to determine whether a given object is of a
given type. The function subtypep, a subset test, is used to determine whether a given type is a
subtype of another given type. The function type-of returns a particular type to which a given
object belongs, even though that object must belong to one or more other types as well. (For
example, every object is of type t, but type-of always returns a type specifier for a type more
specific than t.)

Objects, not variables, have types. Normally, any variable can have any object as its value. It
is possible to declare that a variable takes on only values of a given type by making an explicit
type declaration. Types are arranged in a directed acyclic graph, except for the presence of
equivalences.

Declarations can be made about types using declare, proclaim, declaim, or the. For more
information about declarations, see Section 3.3 (Declarations).

Among the fundamental objects of the object system are classes. A class determines the structure
and behavior of a set of other objects, which are called its instances. Every object is a direct
instance of a class. The class of an object determines the set of operations that can be performed
on the object. For more information, see Section 4.3 (Classes).

It is possible to write functions that have behavior specialized to the class of the objects which are
their arguments. For more information, see Section 7.6 (Generic Functions and Methods).

The class of the class of an object is called its metaclass. For more information about meta-
classes, see Section 7.4 (Meta-Objects).

Types and Classes 4—1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.2 Types

4.2.1 Data Type Definition

Information about type usage is located in the sections specified in Figure 4-1. Figure 4-7 lists
some classes that are particularly relevant to the object system. Figure 9-1 lists the defined
condition types.

Section Data Type
Section 4.3 (Classes) Object System types
Section 7.5 (Slots) Object System types
Chapter 7 (Objects) Object System types
Section 7.6 (Generic Functions and Methods) Object System types
Section 9.1 (Condition System Concepts) Condition System types
Chapter 4 (Types and Classes) Miscellaneous types
Chapter 2 (Syntax) All types—read and print syntax
Section 22.1 (The Lisp Printer) All types—print syntax
Section 3.2 (Compilation) All types—compilation issues

Figure 4—-1. Cross-References to Data Type Information

4.2.2 Type Relationships

e The types cons, symbol, array, number, character, hash-table, function, readtable,
package, pathname, stream, random-state, condition, restart, and any single other
type created by defstruct, define-condition, or defclass are pairwise disjoint, ex-
cept for type relations explicitly established by specifying superclasses in defclass or
define-condition or the :include option of destruct.

e Any two types created by defstruct are disjoint unless one is a supertype of the other by
virtue of the defstruct :include option.

e Any two distinct classes created by defclass or define-condition are disjoint unless they
have a common subclass or one class is a subclass of the other.

e An implementation may be extended to add other subtype relationships between the
specified types, as long as they do not violate the type relationships and disjointness
requirements specified here. An implementation may define additional types that are
subtypes or supertypes of any specified types, as long as each additional type is a subtype
of type t and a supertype of type nil and the disjointness requirements are not violated.

4-2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

At the discretion of the implementation, either standard-object or structure-object
might appear in any class precedence list for a system class that does not already specify
either standard-object or structure-object. If it does, it must precede the class t and
follow all other standardized classes.

4.2.3 Type Specifiers

Type specifiers can be symbols, classes, or lists. Figure 4-2 lists symbols that are standardized
atomic type specifiers, and Figure 4-3 lists standardized compound type specifier names. For
syntax information, see the dictionary entry for the corresponding type specifier. It is possible to
define new type specifiers using defclass, define-condition, defstruct, or deftype.

Types and Classes 4-3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

arithmetic-error
array

atom

base-char
base-string
bignum

bit

bit-vector
broadcast-stream
built-in-class
cell-error
character

class
compiled-function
complex
concatenated-stream
condition

cons

control-error
division-by-zero

function
generic-function
hash-table

integer

keyword

list
logical-pathname
long-float

method
method-combination
nil

null

number

package
package-error
parse-error
pathname
print-not-readable
program-error
random-state

simple-condition
simple-error
simple-string
simple-type-error
simple-vector
simple-warning
single-float
standard-char
standard-class

standard-generic-function

standard-method
standard-object
storage-condition
stream
stream-error
string
string-stream
structure-class
structure-object
style-warning

double-float ratio symbol
echo-stream rational synonym-stream
end-of-file reader-error t

error readtable two-way-stream
extended-char real type-error
file-error restart unbound-slot
file-stream sequence unbound-variable
fixnum serious-condition undefined-function
float short-float unsigned-byte
floating-point-inexact signed-byte vector
floating-point-invalid-operation simple-array warning

floating-point-overflow
floating-point-underflow

simple-base-string
simple-bit-vector

Figure 4—2. Standardized Atomic Type Specifiers

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. Such a type specifier is called a compound type specifier. Except as explicitly
stated otherwise, the subsidiary items can be unspecified. The unspecified subsidiary items are
indicated by writing *. For example, to completely specify a vector, the type of the elements and
the length of the vector must be present.

(vector double-float 100)

The following leaves the length unspecified:

4—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(vector double-float *)
The following leaves the element type unspecified:
(vector * 100)

Suppose that two type specifiers are the same except that the first has a * where the second has a
more explicit specification. Then the second denotes a subtype of the type denoted by the first.

If a list has one or more unspecified items at the end, those items can be dropped. If dropping

all occurrences of * results in a singleton list, then the parentheses can be dropped as well (the
list can be replaced by the symbol in its car). For example, (vector double-float *) can be
abbreviated to (vector double-float), and (vector * *) can be abbreviated to (vector) and then

to vector.
and long-float simple-base-string
array member simple-bit-vector
base-string mod simple-string
bit-vector not simple-vector
complex or single-float
cons rational string
double-float real unsigned-byte
eql satisfies values
float short-float vector
function signed-byte
integer simple-array

Figure 4-3. Standardized Compound Type Specifier Names

Figure 4-4 show the defined names that can be used as compound type specifier names but that
cannot be used as atomic type specifiers.

and mod satisfies
eql not values
member or

Figure 4—4. Standardized Compound-Only Type Specifier Names
New type specifiers can come into existence in two ways.

e Defining a structure by using defstruct without using the :type specifier or defining
a class by using defclass or define-condition automatically causes the name of the
structure or class to be a new type specifier symbol.

e deftype can be used to define derived type specifiers, which act as ‘abbreviations’ for
other type specifiers.

Types and Classes 4-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

A class object can be used as a type specifier. When used this way, it denotes the set of all
members of that class.

Figure 4-5 shows some defined names relating to types and declarations.

coerce defstruct subtypep
declaim deftype the
declare ftype type
defclass locally type-of
define-condition proclaim typep

Figure 4-5. Defined names relating to types and declarations.

Figure 4-6 shows all defined names that are type specifier names, whether for atomic type speci-
fiers or compound type specifiers; this list is the union of the lists in Figure 4-2 and Figure 4-3.

4-6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

and
arithmetic-error
array

atom

base-char
base-string
bignum

bit

bit-vector
broadcast-stream
built-in-class
cell-error
character

class
compiled-function
complex
concatenated-stream
condition

cons
control-error
division-by-zero
double-float
echo-stream
end-of-file

eql

error
extended-char
file-error
file-stream
fixnum

float
floating-point-inexact

floating-point-invalid-operation

floating-point-overflow
floating-point-underflow

function
generic-function
hash-table
integer

keyword

list
logical-pathname
long-float
member

method
method-combination
mod

nil

not

null

number

or

package
package-error
parse-error
pathname
print-not-readable
program-error
random-state
ratio

rational
reader-error
readtable

real

restart

satisfies

sequence
serious-condition
short-float
signed-byte

simple-array
simple-base-string
simple-bit-vector
simple-condition
simple-error
simple-string
simple-type-error
simple-vector
simple-warning
single-float
standard-char
standard-class
standard-generic-function
standard-method
standard-object
storage-condition
stream
stream-error
string
string-stream
structure-class
structure-object
style-warning
symbol
synonym-stream
t

two-way-stream
type-error
unbound-slot
unbound-variable
undefined-function
unsigned-byte
values

vector

warning

Figure 4-6. Standardized Type Specifier Names

Types and Classes

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3 Classes

While the object system is general enough to describe all standardized classes (including, for ex-
ample, number, hash-table, and symbol), Figure 4-7 contains a list of classes that are especially
relevant to understanding the object system.

built-in-class method-combination standard-object
class standard-class structure-class
generic-function standard-generic-function structure-object
method standard-method

Figure 4-7. Object System Classes

4.3.1 Introduction to Classes

A class is an object that determines the structure and behavior of a set of other objects, which
are called its instances.

A class can inherit structure and behavior from other classes. A class whose definition refers

to other classes for the purpose of inheriting from them is said to be a subclass of each of those
classes. The classes that are designated for purposes of inheritance are said to be superclasses of
the inheriting class.

A class can have a name. The function class-name takes a class object and returns its name.
The name of an anonymous class is nil. A symbol can name a class. The function find-class
takes a symbol and returns the class that the symbol names. A class has a proper name if the
name is a symbol and if the name of the class names that class. That is, a class C has the
proper name S if S = (class-name C) and C' = (find-class S). Notice that it is possible for
(find-class S7) = (find-class S3) and S; # So. If C' = (find-class 5), we say that C is the
class named S.

A class C is a direct superclass of a class Cy if Cy explicitly designates Cy as a superclass in

its definition. In this case Cy is a direct subclass of Cy. A class C,, is a superclass of a class

(1 if there exists a series of classes Cs, ..., C,—1 such that C; 14 is a direct superclass of C; for

1 < i < n. In this case, C] is a subclass of C,,. A class is considered neither a superclass nor a

subclass of itself. That is, if C1 is a superclass of Cy, then C; # Cy. The set of classes consisting
of some given class C along with all of its superclasses is called “C and its superclasses.”

Each class has a class precedence list, which is a total ordering on the set of the given class
and its superclasses. The total ordering is expressed as a list ordered from most specific to least
specific. The class precedence list is used in several ways. In general, more specific classes can
shadow features that would otherwise be inherited from less specific classes. The method
selection and combination process uses the class precedence list to order methods from most
specific to least specific.

4-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.1.1

When a class is defined, the order in which its direct superclasses are mentioned in the defining
form is important. Each class has a local precedence order, which is a list consisting of the
class followed by its direct superclasses in the order mentioned in the defining form.

A class precedence list is always consistent with the local precedence order of each class in the
list. The classes in each local precedence order appear within the class precedence list in the
same order. If the local precedence orders are inconsistent with each other, no class precedence
list can be constructed, and an error is signaled. The class precedence list and its computation is
discussed in Section 4.3.5 (Determining the Class Precedence List).

classes are organized into a directed acyclic graph. There are two distinguished classes, named

t and standard-object. The class named t has no superclasses. It is a superclass of every class
except itself. The class named standard-object is an instance of the class standard-class and is
a superclass of every class that is an instance of the class standard-class except itself.

There is a mapping from the object system class space into the type space. Many of the standard
types specified in this document have a corresponding class that has the same name as the type.
Some types do not have a corresponding class. The integration of the type and class systems is
discussed in Section 4.3.7 (Integrating Types and Classes).

Classes are represented by objects that are themselves instances of classes. The class of the class
of an object is termed the metaclass of that object. When no misinterpretation is possible, the
term metaclass is used to refer to a class that has instances that are themselves classes. The
metaclass determines the form of inheritance used by the classes that are its instances and the
representation of the instances of those classes. The object system provides a default metaclass,
standard-class, that is appropriate for most programs.

Except where otherwise specified, all classes mentioned in this standard are instances of the class
standard-class, all generic functions are instances of the class standard-generic-function, and
all methods are instances of the class standard-method.

Standard Metaclasses

The object system provides a number of predefined metaclasses. These include the classes
standard-class, built-in-class, and structure-class:

e The class standard-class is the default class of classes defined by defclass.

e The class built-in-class is the class whose instances are classes that have special imple-
mentations with restricted capabilities. Any class that corresponds to a standard type
might be an instance of built-in-class. The predefined type specifiers that are required
to have corresponding classes are listed in Figure 4-8. It is implementation-dependent

whether each of these classes is implemented as a built-in class.

e All classes defined by means of defstruct are instances of the class structure-class.

Types and Classes 4—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.2 Defining Classes

The macro defclass is used to define a new named class.
The definition of a class includes:
e The name of the new class. For newly-defined classes this name is a proper name.
e The list of the direct superclasses of the new class.
e A set of slot specifiers. Each slot specifier includes the name of the slot and zero
or more slot options. A slot option pertains only to a single slot. If a class definition

contains two slot specifiers with the same name, an error is signaled.

e A set of class options. Each class option pertains to the class as a whole.

The slot options and class options of the defclass form provide mechanisms for the following:
e Supplying a default initial value form for a given slot.

e Requesting that methods for generic functions be automatically generated for reading or
writing slots.

e Controlling whether a given slot is shared by all instances of the class or whether each
instance of the class has its own slot.

e Supplying a set of initialization arguments and initialization argument defaults to be used
in instance creation.

e Indicating that the metaclass is to be other than the default. The :metaclass option is
reserved for future use; an implementation can be extended to make use of the :metaclass
option.

e Indicating the expected type for the value stored in the slot.

e Indicating the documentation string for the slot.

4-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.3 Creating Instances of Classes

The generic function make-instance creates and returns a new instance of a class. The object
system provides several mechanisms for specifying how a new instance is to be initialized. For
example, it is possible to specify the initial values for slots in newly created instances either by
giving arguments to make-instance or by providing default initial values. Further initialization
activities can be performed by methods written for generic functions that are part of the initial-
ization protocol. The complete initialization protocol is described in Section 7.1 (Object Creation
and Initialization).

4.3.4 Inheritance

4.3.4.1

4.3.4.2

A class can inherit methods, slots, and some defclass options from its superclasses. Other sec-
tions describe the inheritance of methods, the inheritance of slots and slot options, and the
inheritance of class options.

Examples of Inheritance

(defclass C1 ()
((81 :initform 5.4 :type number)
(S2 :allocation :class)))

(defclass C2 (C1)
((s1 :initform 5 :type integer)
(S2 :allocation :instance)
(S3 :accessor C2-83)))

Instances of the class €1 have a local slot named S1, whose default initial value is 5.4 and whose
value should always be a number. The class C1 also has a shared slot named S2.

There is a local slot named S1 in instances of ¢2. The default initial value of S1 is 5. The value of
S1 should always be of type (and integer number). There are also local slots named S2 and S3 in

instances of C2. The class €2 has a method for ¢2-83 for reading the value of slot S3; there is also

a method for (setf C2-83) that writes the value of s3.

Inheritance of Class Options

The :default-initargs class option is inherited. The set of defaulted initialization arguments
for a class is the union of the sets of initialization arguments supplied in the :default-initargs
class options of the class and its superclasses. When more than one default initial value form is
supplied for a given initialization argument, the default initial value form that is used is the one
supplied by the class that is most specific according to the class precedence list.

If a given :default-initargs class option specifies an initialization argument of the same name
more than once, an error of type program-error is signaled.

Types and Classes 4-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.5 Determining the Class Precedence List

4.3.5.1

The defclass form for a class provides a total ordering on that class and its direct superclasses.
This ordering is called the local precedence order. It is an ordered list of the class and its
direct superclasses. The class precedence list for a class C is a total ordering on C' and its
superclasses that is consistent with the local precedence orders for each of C' and its superclasses.

A class precedes its direct superclasses, and a direct superclass precedes all other direct super-
classes specified to its right in the superclasses list of the defclass form. For every class C, define

Ro ={(C,C1),(C1,C),...,(Cre1,Cp)}

where C1,...,C, are the direct superclasses of C' in the order in which they are mentioned in
the defclass form. These ordered pairs generate the total ordering on the class C' and its direct
superclasses.

Let S¢ be the set of C' and its superclasses. Let R be

R=] R

ceSc

The set R might or might not generate a partial ordering, depending on whether the R., ¢ € S¢,
are consistent; it is assumed that they are consistent and that R generates a partial ordering.
When the R, are not consistent, it is said that R is inconsistent.

To compute the class precedence list for C, topologically sort the elements of S¢ with respect
to the partial ordering generated by R When the topological sort must select a class from a set
of two or more classes, none of which are preceded by other classes with respect to R, the class
selected is chosen deterministically, as described below.

If R is inconsistent, an error is signaled.

Topological Sorting

Topological sorting proceeds by finding a class C in S¢ such that no other class precedes that
element according to the elements in R The class C is placed first in the result. Remove C' from
S¢, and remove all pairs of the form (C, D), D € S¢, from R Repeat the process, adding classes
with no predecessors to the end of the result. Stop when no element can be found that has no
predecessor.

If S¢ is not empty and the process has stopped, the set R is inconsistent. If every class in the
finite set of classes is preceded by another, then R contains a loop. That is, there is a chain of
classes C1, ..., C), such that C; precedes C;11, 1 < i< n, and C), precedes Cj.

Sometimes there are several classes from Sc with no predecessors. In this case select the one that
has a direct subclass rightmost in the class precedence list computed so far. (If there is no such
candidate class, R does not generate a partial ordering—the R, ¢ € S¢, are inconsistent.)

4-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.5.2

In more precise terms, let {N1,..., N, }, m > 2, be the classes from S¢ with no predecessors. Let
(C1...Ch), n > 1, be the class precedence list constructed so far. C; is the most specific class,
and C,, is the least specific. Let 1 < j < n be the largest number such that there exists an i where
1 <7< m and N; is a direct superclass of C;; N; is placed next.

The effect of this rule for selecting from a set of classes with no predecessors is that the classes
in a simple superclass chain are adjacent in the class precedence list and that classes in each
relatively separated subgraph are adjacent in the class precedence list. For example, let 77 and
T be subgraphs whose only element in common is the class J. Suppose that no superclass of J
appears in either 77 or T5, and that J is in the superclass chain of every class in both 7} and

T5. Let C7 be the bottom of T7; and let Cy be the bottom of T5. Suppose C is a class whose
direct superclasses are C7 and Cy in that order, then the class precedence list for C starts with C
and is followed by all classes in T7 except J. All the classes of Ty are next. The class J and its
superclasses appear last.

Examples of Class Precedence List Determination

This example determines a class precedence list for the class pie. The following classes are

defined:

(defclass pie (apple cinnamon) ())
(defclass apple (fruit) ())
(defclass cinnamon (spice) ())
(defclass fruit (food) ())
(defclass spice (food) ()

(defclass food () ()

The set Spie = {pie, apple, cinnamon, fruit, spice, food, standard-object, t}. The set R =
{(pie, apple), (apple, cinnamon), (apple, fruit), (cinnamon, spice),
(fruit, food), (spice, food), (food, standard-object), (standard-object, t)}.

The class pie is not preceded by anything, so it comes first; the result so far is (pie). Remove
pie from S and pairs mentioning pie from R to get S = {apple, cinnamon, fruit, spice, food,
standard-object, t} and R = {(apple, cinnamon), (apple, fruit), (cinnamon, spice),
(fruit, food), (spice, food), (food, standard-object), (standard-object, t) }

The class apple is not preceded by anything, so it is next; the result is (pie apple). Removing
apple and the relevant pairs results in S = {cinnamon, fruit, spice, food, standard-object, t}
and R = {(cinnamon, spice), (fruit, food), (spice, food), (food, standard-object),
(standard-object, t)}.

The classes cinnamon and fruit are not preceded by anything, so the one with a direct subclass
rightmost in the class precedence list computed so far goes next. The class apple is a direct

Types and Classes 4-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subclass of fruit, and the class pie is a direct subclass of cinnamon. Because apple appears to
the right of pie in the class precedence list, fruit goes next, and the result so far is (pie apple
fruit). S =:{cinnamon, spice, food, standard-object, t};}{:Z {(cinnamon, spice), (spice,
food),

(food, standard-object), (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit cinnamon). At this
point S ::{spice, food, standard-object, t};]%:: {(spice, food), (food, standard-object),
(standard-object, t)}.

The classes spice, food, standard-object, and t are added in that order, and the class precedence
list is (pie apple fruit cinnamon spice food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For example:

(defclass new-class (fruit apple) ())

(defclass apple (fruit) ())

The class fruit must precede apple because the local ordering of superclasses must be preserved.
The class apple must precede fruit because a class always precedes its own superclasses. When
this situation occurs, an error is signaled, as happens here when the system tries to compute the
class precedence list of new-class.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())
(defclass pastry (cinnamon apple) ())
(defclass apple O)

(defclass cinnamon () ())
The class precedence list for pie is (pie apple cinnamon standard-object t).
The class precedence list for pastry is (pastry cinnamon apple standard-object t)

It is not a problem for apple to precede cinnamon in the ordering of the superclasses of pie but not
in the ordering for pastry. However, it is not possible to build a new class that has both pie and
pastry as superclasses.

4.3.6 Redefining Classes

A class that is a direct instance of standard-class can be redefined if the new class is also a direct
instance of standard-class. Redefining a class modifies the existing class object to reflect the new
class definition; it does not create a new class object for the class. Any method object created by
a :reader, :writer, or :accessor option specified by the old defclass form is removed from the
corresponding generic function. Methods specified by the new defclass form are added.

4-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.6.1

When the class C is redefined, changes are propagated to its instances and to instances of any of
its subclasses. Updating such an instance occurs at an implementation-dependent time, but no
later than the next time a slot of that instance is read or written. Updating an instance does not
change its identity as defined by the function eq. The updating process may change the slots of
that particular instance, but it does not create a new instance. Whether updating an instance
consumes storage is implementation-dependent.

Note that redefining a class may cause slots to be added or deleted. If a class is redefined in a
way that changes the set of local slots accessible in instances, the instances are updated. It is
implementation-dependent whether instances are updated if a class is redefined in a way that
does not change the set of local slots accessible in instances.

The value of a slot that is specified as shared both in the old class and in the new class is re-
tained. If such a shared slot was unbound in the old class, it is unbound in the new class. Slots
that were local in the old class and that are shared in the new class are initialized. Newly added
shared slots are initialized.

Each newly added shared slot is set to the result of evaluating the captured initialization form for
the slot that was specified in the defclass form for the new class. If there was no initialization
form, the slot is unbound.

If a class is redefined in such a way that the set of local slots accessible in an instance of the class
is changed, a two-step process of updating the instances of the class takes place. The process
may be explicitly started by invoking the generic function make-instances-obsolete. This two-
step process can happen in other circumstances in some implementations. For example, in some
implementations this two-step process is triggered if the order of slots in storage is changed.

The first step modifies the structure of the instance by adding new local slots and discarding
local slots that are not defined in the new version of the class. The second step initializes the
newly-added local slots and performs any other user-defined actions. These two steps are further
specified in the next two sections.

Modifying the Structure of Instances

The first step modifies the structure of instances of the redefined class to conform to its new
class definition. Local slots specified by the new class definition that are not specified as either
local or shared by the old class are added, and slots not specified as either local or shared by the
new class definition that are specified as local by the old class are discarded. The names of these
added and discarded slots are passed as arguments to update-instance-for-redefined-class as
described in the next section.

The values of local slots specified by both the new and old classes are retained. If such a local slot
was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in the new class is
retained. If such a shared slot was unbound, the local slot is unbound.

Types and Classes 4-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

4.3.6.2

4.3.6.3

Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any other user-defined
actions. This step is implemented by the generic function update-instance-for-redefined-class,
which is called after completion of the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four required arguments: the
instance being updated after it has undergone the first step, a list of the names of local slots that
were added, a list of the names of local slots that were discarded, and a property list containing
the slot names and values of slots that were discarded and had values. Included among the
discarded slots are slots that were local in the old class and that are shared in the new class.

The generic function update-instance-for-redefined-class also takes any number of initialization
arguments. When it is called by the system to update an instance whose class has been redefined,
no initialization arguments are provided.

There is a system-supplied primary method for update-instance-for-redefined-class whose
parameter specializer for its instance argument is the class standard-object. First this method
checks the validity of initialization arguments and signals an error if an initialization argument
is supplied that is not declared as valid. (For more information, see Section 7.1.2 (Declaring
the Validity of Initialization Arguments).) Then it calls the generic function shared-initialize
with the following arguments: the instance, the list of names of the newly added slots, and the
initialization arguments it received.

Customizing Class Redefinition

Methods for update-instance-for-redefined-class may be defined to specify actions to be taken
when an instance is updated. If only after methods for update-instance-for-redefined-class
are defined, they will be run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update-instance-for-redefined-class.
Because no initialization arguments are passed to update-instance-for-redefined-class when

it is called by the system, the initialization forms for slots that are filled by before methods for
update-instance-for-redefined-class will not be evaluated by shared-initialize.

Methods for shared-initialize may be defined to customize class redefinition. For more informa-
tion, see Section 7.1.5 (Shared-Initialize).

4.3.7 Integrating Types and Classes

The object system maps the space of classes into the space of types. Every class that has a
proper name has a corresponding type with the same name.

The proper name of every class is a valid type specifier. In addition, every class object is a valid
type specifier. Thus the expression (typep object class) evaluates to true if the class of object
is class itself or a subclass of class. The evaluation of the expression (subtypep classl class2)
returns the values true and true if classl is a subclass of class2 or if they are the same class;
otherwise it returns the values false and true. If I is an instance of some class C' named S and

4-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

C' is an instance of standard-class, the evaluation of the expression (type-of I) returns S if S is
the proper name of C'; otherwise, it returns C.

Because the names of classes and class objects are type specifiers, they may be used in the special
form the and in type declarations.

Many but not all of the predefined type specifiers have a corresponding class with the same
proper name as the type. These type specifiers are listed in Figure 4-8. For example, the type
array has a corresponding class named array. No type specifier that is a list, such as (vector
double-float 100), has a corresponding class. The operator deftype does not create any classes.

Each class that corresponds to a predefined type specifier can be implemented in one of three
ways, at the discretion of each implementation. It can be a standard class, a structure class, or a
system class.

A built-in class is one whose generalized instances have restricted capabilities or special repre-
sentations. Attempting to use defclass to define subclasses of a built-in-class signals an error.
Calling make-instance to create a generalized instance of a built-in class signals an error. Calling
slot-value on a generalized instance of a built-in class signals an error. Redefining a built-in class
or using change-class to change the class of an object to or from a built-in class signals an error.
However, built-in classes can be used as parameter specializers in methods.

It is possible to determine whether a class is a built-in class by checking the metaclass. A stan-
dard class is an instance of the class standard-class, a built-in class is an instance of the class
built-in-class, and a structure class is an instance of the class structure-class.

Each structure type created by defstruct without using the :type option has a corresponding
class. This class is a generalized instance of the class structure-class. The :include option of
defstruct creates a direct subclass of the class that corresponds to the included structure type.

It is implementation-dependent whether slots are involved in the operation of functions defined
in this specification on instances of classes defined in this specification, except when slots are
explicitly defined by this specification.

If in a particular implementation a class defined in this specification has slots that are not defined
by this specfication, the names of these slots must not be external symbols of packages defined in
this specification nor otherwise accessible in the CL-USER package.

The purpose of specifying that many of the standard type specifiers have a corresponding class is
to enable users to write methods that discriminate on these types. Method selection requires that
a class precedence list can be determined for each class.

The hierarchical relationships among the type specifiers are mirrored by relationships among the
classes corresponding to those types.

Figure 4-8 lists the set of classes that correspond to predefined type specifiers.

Types and Classes 4-17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

arithmetic-error

array

bit-vector
broadcast-stream
built-in-class

cell-error

character

class

complex
concatenated-stream
condition

cons

control-error
division-by-zero
echo-stream

end-of-file

error

file-error

file-stream

float
floating-point-inexact
floating-point-invalid-operation
floating-point-overflow
floating-point-underflow
function

generic-function
hash-table
integer

list
logical-pathname
method
method-combination
null

number

package
package-error
parse-error
pathname
print-not-readable
program-error
random-state
ratio

rational
reader-error
readtable

real

restart

sequence
serious-condition
simple-condition

simple-error
simple-type-error
simple-warning
standard-class
standard-generic-function
standard-method
standard-object
storage-condition
stream
stream-error
string
string-stream
structure-class
structure-object
style-warning
symbol
synonym-stream
t

two-way-stream
type-error
unbound-slot
unbound-variable
undefined-function
vector

warning

Figure 4-8. Classes that correspond to pre-defined type specifiers

The class precedence list information specified in the entries for each of these classes are those
that are required by the object system.

Individual implementations may be extended to define other type specifiers to have a correspond-
ing class. Individual implementations may be extended to add other subclass relationships and to
add other elements to the class precedence lists as long as they do not violate the type relation-
ships and disjointness requirements specified by this standard. A standard class defined with no
direct superclasses is guaranteed to be disjoint from all of the classes in the table, except for the
class named t.

4-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

nil Type

Supertypes:
all types

Description:

The type nil contains no objects and so is also called the empty type. The type nil is a subtype of
every type. No object is of type nil.

Notes:

The type containing the object nil is the type null, not the type nil.

boolean Type
Supertypes:

boolean, symbol, t
Description:

The type boolean contains the symbols t and nil, which represent true and false, respectively.
See Also:

t (constant variable), nil (constant variable), if, not, complement
Notes:

Conditional operations, such as if, permit the use of generalized booleans, not just booleans;
any non-nil value, not just t, counts as true for a generalized boolean. However, as a matter of
convention, the symbol t is considered the canonical value to use even for a generalized boolean
when no better choice presents itself.

Types and Classes 4—19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function

function System Class

Class Precedence List:

function, t

Description:

A function is an object that represents code to be executed when an appropriate number of
arguments is supplied. A function is produced by the function special form, the function coerce,
or the function compile. A function can be directly invoked by using it as the first argument to
funcall, apply, or multiple-value-call.

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:
(function [arg-typespec [value-typespec|])

arg-typespec::=({typespec}*
[&optional {typespec}*]
[&rest typespec]
[&key {(keyword typespec)}*1)

Compound Type Specifier Arguments:
typespec—a type specifier.

value-typespec—a type specifier.

Compound Type Specifier Description:

The list form of the function type-specifier can be used only for declaration and not for discrim-
ination. Every element of this type is a function that accepts arguments of the types specified

by the argj-types and returns values that are members of the types specified by value-type. The
&optional, &rest, &key, and &allow-other-keys markers can appear in the list of argument
types. The type specifier provided with &rest is the type of each actual argument, not the type of
the corresponding variable.

The &key parameters should be supplied as lists of the form (keyword type). The keyword

must be a valid keyword-name symbol as must be supplied in the actual arguments of a call.
This is usually a symbol in the KEYWORD package but can be any symbol. When &key is given

in a function type specifier lambda list, the keyword parameters given are exhaustive unless
&allow-other-keys is also present. &allow-other-keys is an indication that other keyword
arguments might actually be supplied and, if supplied, can be used. For example, the type of the
function make-list could be declared as follows:

4-20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(function ((integer 0) &key (:initial-element t)) list)
The value-type can be a values type specifier in order to indicate the types of multiple values.
Consider a declaration of the following form:
(ftype (function (argO-type argl-type ...) val-type) f))
Any form (f arg0d argl ...) within the scope of that declaration is equivalent to the following:
(the val-type (f (the argO-type arg0) (the argl-type argl) ...))

That is, the consequences are undefined if any of the arguments are not of the specified types or
the result is not of the specified type. In particular, if any argument is not of the correct type, the
result is not guaranteed to be of the specified type.

Thus, an ftype declaration for a function describes calls to the function, not the actual definition
of the function.

Consider a declaration of the following form:
(type (function (argO-type argl-type ...) val-type) fn-valued-variable)

This declaration has the interpretation that, within the scope of the declaration, the consequences
are unspecified if the value of fn-valued-variable is called with arguments not of the specified
types; the value resulting from a valid call will be of type val-type.

As with variable type declarations, nested declarations imply intersections of types, as follows:

e Consider the following two declarations of ftype:
(ftype (function (argO-typel argl-typel ...) val-typel) £f))
and
(ftype (function (argO-type2 argl-type2 ...) val-type2) f))

If both these declarations are in effect, then within the shared scope of the declarations,
calls to £ can be treated as if £ were declared as follows:

(ftype (function ((and argO-typel argO-type2) (and argl-typel argi-type2 ...) ...)
(and val-typel val-type2))
£))

It is permitted to ignore one or all of the ftype declarations in force.

e If two (or more) type declarations are in effect for a variable, and they are both function
declarations, the declarations combine similarly.

Types and Classes 4—21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compiled-function Type

Supertypes:

compiled-function, function, t

Description:
Any function may be considered by an implementation to be a a compiled function if it contains
no references to macros that must be expanded at run time, and it contains no unresolved
references to load time values. See Section 3.2.2 (Compilation Semantics).

Functions whose definitions appear lexically within a file that has been compiled with
compile-file and then loaded with load are of type compiled-function. Functions produced
by the compile function are of type compiled-function. Other functions might also be of type
compiled-function.

generic-function System Class

Class Precedence List:

generic-function, function, t

Description:
A generic function is a function whose behavior depends on the classes or identities of the
arguments supplied to it. A generic function object contains a set of methods, a lambda list, a
method combination type, and other information. The methods define the class-specific behavior
and operations of the generic function; a method is said to specialize a generic function. When
invoked, a generic function executes a subset of its methods based on the classes or identities of
its arguments.

A generic function can be used in the same ways that an ordinary function can be used; specif-
ically, a generic function can be used as an argument to funcall and apply, and can be given a
global or a local name.

4-22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-generic-function System Class

Class Precedence List:

standard-generic-function, generic-function, function, t

Description:

The class standard-generic-function is the default class of generic functions established by
defmethod, ensure-generic-function, defgeneric, and defclass forms.

class System Class

Class Precedence List:

class, standard-object, t

Description:

The type class represents objects that determine the structure and behavior of their instances.
Associated with an object of type class is information describing its place in the directed acyclic
graph of classes, its slots, and its options.

built-in-class System Class

Class Precedence List:

built-in-class, class, standard-object, t

Description:

A built-in class is a class whose instances have restricted capabilities or special representations.
Attempting to use defclass to define subclasses of a built-in class signals an error of type error.
Calling make-instance to create an instance of a built-in class signals an error of type error.
Calling slot-value on an instance of a built-in class signals an error of type error. Redefining a
built-in class or using change-class to change the class of an instance to or from a built-in class
signals an error of type error. However, built-in classes can be used as parameter specializers in
methods.

Types and Classes 4—23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

structure-class System Class

Class Precedence List:
structure-class, class, standard-object, t

Description:
All classes defined by means of defstruct are instances of the class structure-class.

standard-class System Class

Class Precedence List:
standard-class, class, standard-object, t

Description:
The class standard-class is the default class of classes defined by defclass.

method System Class

Class Precedence List:
method, t

Description:
A method is an object that represents a modular part of the behavior of a generic function.

A method contains code to implement the method’s behavior, a sequence of parameter specializers
that specify when the given method is applicable, and a sequence of qualifiers that is used by

the method combination facility to distinguish among methods. Each required parameter of

each method has an associated parameter specializer, and the method will be invoked only on
arguments that satisfy its parameter specializers.

The method combination facility controls the selection of methods, the order in which they are
run, and the values that are returned by the generic function. The object system offers a default
method combination type and provides a facility for declaring new types of method combination.

See Also:

Section 7.6 (Generic Functions and Methods)

4-24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

standard-method System Class

Class Precedence List:
standard-method, method, standard-object, t

Description:

The class standard-method is the default class of methods defined by the defmethod and
defgeneric forms.

structure-object Class

Class Precedence List:

structure-object, t

Description:

The class structure-object is an instance of structure-class and is a superclass of every class
that is an instance of structure-class except itself, and is a superclass of every class that is
defined by defstruct.

See Also:
defstruct, Section 2.4.8.13 (Sharpsign S), Section 22.1.3.12 (Printing Structures)

standard-object Class

Class Precedence List:
standard-object, t

Description:

The class standard-object is an instance of standard-class and is a superclass of every class that
is an instance of standard-class except itself.

Types and Classes 4—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

method-combination System Class

Class Precedence List:
method-combination, t

Description:
Every method combination object is an indirect instance of the class method-combination. A
method combination object represents the information about the method combination being used
by a generic function. A method combination object contains information about both the type of
method combination and the arguments being used with that type.

t System Class

Class Precedence List:

t
Description:
The set of all objects. The type t is a supertype of every type, including itself. Every object is of
type t.
satisfies Type Specifier

Compound Type Specifier Kind:
Predicating.

Compound Type Specifier Syntax:

(satisfies predicate-name)

Compound Type Specifier Arguments:

predicate-name—a. symbol.

Compound Type Specifier Description:
This denotes the set of all objects that satisfy the predicate predicate-name, which must be a
symbol whose global function definition is a one-argument predicate. A name is required for
predicate-name; lambda expressions are not allowed. For example, the type specifier (and integer
(satisfies evenp)) denotes the set of all even integers. The form (typep x ’(satisfies p)) is
equivalent to (if (p x) t nil).

4-26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The argument is required. The symbol * can be the argument, but it denotes itself (the symbol
*), and does not represent an unspecified value.

The symbol satisfies is not valid as a type specifier.

member Type Specifier

Compound Type Specifier Kind:

Combining.

Compound Type Specifier Syntax:
(member {object}*)

Compound Type Specifier Arguments:

object—an object.

Compound Type Specifier Description:

This denotes the set containing the named objects. An object is of this type if and only if it is eql
to one of the specified objects.

The type specifiers (member) and nil are equivalent. * can be among the objects, but if so it
denotes itself (the symbol *) and does not represent an unspecified value. The symbol member
is not valid as a type specifier; and, specifically, it is not an abbreviation for either (member) or
(member *).

See Also:
the type eql

not Type Specifier

Compound Type Specifier Kind:

Combining.

Compound Type Specifier Syntax:
(not typespec)

Compound Type Specifier Arguments:
typespec—a type specifier.

Types and Classes 4-27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:
This denotes the set of all objects that are not of the type typespec.

The argument is required, and cannot be *.

The symbol not is not valid as a type specifier.

and Type Specifier

Compound Type Specifier Kind:

Combining.

Compound Type Specifier Syntax:
(and {typespec}*)

Compound Type Specifier Arguments:
typespec—a type specifier.

Compound Type Specifier Description:
This denotes the set of all objects of the type determined by the intersection of the typespecs.

* is not permitted as an argument.

The type specifiers (and) and t are equivalent. The symbol and is not valid as a type specifier,
and, specifically, it is not an abbreviation for (and).

or Type Specifier

Compound Type Specifier Kind:

Combining.

Compound Type Specifier Syntax:
(or {typespec}*)

Compound Type Specifier Arguments:
typespec—a type specifier.

4-28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Compound Type Specifier Description:

This denotes the set of all objects of the type determined by the union of the typespecs. For
example, the type list by definition is the same as (or null cons). Also, the value returned by
position is an object of type (or null (integer O *)); i.e., either nil or a non-negative integer.

* is not permitted as an argument.

The type specifiers (or) and nil are equivalent. The symbol or is not valid as a type specifier; and,
specifically, it is not an abbreviation for (or).

values Type Specifier

Compound Type Specifier Kind:

Specializing.

Compound Type Specifier Syntax:

(values |value-typespec)

value-typespec::={typespec}* [&optional {typespec}*] [&rest typespec] [&allow-other-keys]

Compound Type Specifier Arguments:
typespec—a type specifier.

Compound Type Specifier Description:

This type specifier can be used only as the value-type in a function type specifier or a the special
form. It is used to specify individual types when multiple values are involved. The &optional
and &rest markers can appear in the value-type list; they indicate the parameter list of a function
that, when given to multiple-value-call along with the values, would correctly receive those
values.

The symbol * may not be among the value-types.

The symbol values is not valid as a type specifier; and, specifically, it is not an abbreviation for
(values).

Types and Classes 4—29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eql Type Specifier

Compound Type Specifier Kind:

Combining.

Compound Type Specifier Syntax:
(eql object)

Compound Type Specifier Arguments:

object—an object.

Compound Type Specifier Description:
Represents the type of all x for which (eql object x) is true.

The argument object is required. The object can be *, but if so it denotes itself (the symbol
*) and does not represent an unspecified value. The symbol eql is not valid as an atomic type
specifier.

coerce Function

Syntax:

coerce object result-type — result

Arguments and Values:
object—an object.

result-type—a type specifier.

result—an object, of type result-type except in situations described in Section 12.1.5.3 (Rule of
Canonical Representation for Complex Rationals).

Description:
Coerces the object to type result-type.

If object is already of type result-type, the object itself is returned, regardless of whether it would
have been possible in general to coerce an object of some other type to result-type.

Otherwise, the object is coerced to type result-type according to the following rules:

4-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

coerce

sequence

If the result-type is a recognizable subtype of list, and the object is a sequence, then the
result is a list that has the same elements as object.

If the result-type is a recognizable subtype of vector, and the object is a sequence, then
the result is a vector that has the same elements as object. If result-type is a specialized
type, the result has an actual array element type that is the result of upgrading the
element type part of that specialized type. If no element type is specified, the element
type defaults to t. If the implementation cannot determine the element type, an error is
signaled.

character

If the result-type is character and the object is a character designator, the result is the
character it denotes.

complex

If the result-type is complex and the object is a real, then the result is obtained by
constructing a complex whose real part is the object and whose imaginary part is the
result of coercing an integer zero to the type of the object (using coerce). (If the real part
is a rational, however, then the result must be represented as a rational rather than a
complez; see Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).
So, for example, (coerce 3 ’complex) is permissible, but will return 3, which is not a
complez.)

float

If the result-type is any of float, short-float, single-float, double-float, long-float, and
the object is a real, then the result is a float of type result-type which is equal in sign and
magnitude to the object to whatever degree of representational precision is permitted by
that float representation. (If the result-type is float and object is not already a float, then
the result is a single float.)

function

If the result-type is function, and object is any function name that is fbound but that is
globally defined neither as a macro name nor as a special operator, then the result is the
functional value of object.

If the result-type is function, and object is a lambda expression, then the result is a
closure of object in the null lexical environment.

Any object can be coerced to an object of type t. In this case, the object is simply re-
turned.

Types and Classes 4—-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(coerce
(coerce
(coerce
(coerce
(coerce
(coerce
(coerce
(coerce
(coerce

‘(a b

c) ’vector) — #(A B C)

’a ’character) — #\A
4.56 ’complex) — #C(4.56 0.0)

4.5s0

’complex) — #C(4.5s0 0.0s0)

7/2 ’complex) — 7/2
0 ’short-float) — 0.0s0

3.5L0

’float) — 3.5L0

7/2 ’float) — 3.5

(cons

12)¢) — (1. 2)

All the following forms should signal an error:

(coerce
(coerce
(coerce
(coerce
(coerce
(coerce
(coerce

J(a
#(a
J(a
#(a
"foo"
#(#\a

b
b
b
b

c) ’(vector * 4))
c) ’(vector * 4))
c) ’(vector * 2))
c) ’(vector * 2))

> (string 2))
#\b #\c) ’(string 2))

’(0 1) ’(simple-bit-vector 3))

Exceptional Situations:

If a coercion is not possible, an error of type type-error is signaled.
(coerce x ’nil) always signals an error of type type-error.

An error of type error is signaled if the result-type is function but object is a symbol that is not
fbound or if the symbol names a macro or a special operator.

An error of type type-error should be signaled if result-type specifies the number of elements and

object is of a different length.

See Also:

rational, floor, char-code, char-int

Notes:

Coercions from floats to rationals and from ratios to integers are not provided because of round-

ing problems.

(coerce x ’t) = (identity x) = x

4-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

deftype

deftype Macro

Syntax:

deftype name lambda-list [{declaration}* | documentation] {form}* — name

Arguments and Values:
name—a symbol.

lambda-list—a deftype lambda list.
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Description:
deftype defines a derived type specifier named name.

The meaning of the new type specifier is given in terms of a function which expands the type
specifier into another type specifier, which itself will be expanded if it contains references to
another derived type specifier.

The newly defined type specifier may be referenced as a list of the form (name arg; arge ...).
The number of arguments must be appropriate to the lambda-list. If the new type specifier takes
no arguments, or if all of its arguments are optional, the type specifier may be used as an atomic

type specifier.

The argument expressions to the type specifier, argy ... arg,, are not evaluated. Instead, these
literal objects become the objects to which corresponding parameters become bound.

The body of the deftype form (but not the lambda-list) is implicitly enclosed in a block named
name, and is evaluated as an implicit progn, returning a new type specifier.

The lexical environment of the body is the one which was current at the time the deftype form
was evaluated, augmented by the variables in the lambda-list.

Recursive expansion of the type specifier returned as the expansion must terminate, including the
expansion of type specifiers which are nested within the expansion.

The consequences are undefined if the result of fully expanding a type specifier contains any
circular structure, except within the objects referred to by member and eql type specifiers.

Documentation is attached to name as a documentation string of kind type.

If a deftype form appears as a top level form, the compiler must ensure that the name is recog-
nized in subsequent type declarations. The programmer must ensure that the body of a deftype
form can be evaluated at compile time if the name is referenced in subsequent type declarations.

Types and Classes 4—33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the expansion of a type specifier is not defined fully at compile time (perhaps because it ex-
pands into an unknown type specifier or a satisfies of a named function that isn’t defined in
the compile-time environment), an implementation may ignore any references to this type in
declarations and/or signal a warning.

Examples:

(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #’= (array-dimensions a)))) — EQUIDIMENSIONAL
(deftype square-matrix (&optional type size)
‘(and (array ,type (,size ,size))
(satisfies equidimensional))) — SQUARE-MATRIX

See Also:

declare, defmacro, documentation, Section 4.2.3 (Type Specifiers), Section 3.4.11 (Syntactic
Interaction of Documentation Strings and Declarations)

subtyp ep Function

Syntax:
subtypep type-1 type-2 &optional environment — subtype-p, valid-p

Arguments and Values:
type-1—a type specifier.
type-2—a type specifier.

environment—an environment object. The default is nil, denoting the null lexical environment
and the current global environment.

subtype-p—a generalized boolean.

valid-p—a generalized boolean.

Description:
If type-1 is a recognizable subtype of type-2, the first value is true. Otherwise, the first value is
false, indicating that either type-1 is not a subtype of type-2, or else type-1 is a subtype of type-2
but is not a recognizable subtype.

A second walue is also returned indicating the ‘certainty’ of the first value. If this value is true,
then the first value is an accurate indication of the subtype relationship. (The second value is
always true when the first value is true.)

4-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subtypep

Figure 4-9 summarizes the possible combinations of values that might result.

Value 1 Value 2 Meaning
true true type-1 is definitely a subtype of type-2.
false true type-1 is definitely not a subtype of type-2.
false false subtypep could not determine the relationship,
so type-1 might or might not be a subtype of type-2.

Figure 4-9. Result possibilities for subtypep

subtypep is permitted to return the values false and false only when at least one argument in-
volves one of these type specifiers: and, eql, the list form of function, member, not, or, satisfies,
or values. (A type specifier ‘involves’ such a symbol if, after being type expanded, it contains

that symbol in a position that would call for its meaning as a type specifier to be used.) One
consequence of this is that if neither type-1 nor type-2 involves any of these type specifiers, then
subtypep is obliged to determine the relationship accurately. In particular, subtypep returns the
values true and true if the arguments are equal and do not involve any of these type specifiers.

subtypep never returns a second value of nil when both type-1 and type-2 involve only the names
in Figure 4-2, or names of types defined by defstruct, define-condition, or defclass, or derived
types that expand into only those names. While type specifiers listed in Figure 4-2 and names

of defclass and defstruct can in some cases be implemented as derived types, subtypep regards
them as primitive.

The relationships between types reflected by subtypep are those specific to the particular im-
plementation. For example, if an implementation supports only a single type of floating-point
numbers, in that implementation (subtypep ’float ’long-float) returns the walues true and true
(since the two types are identical).

For all T1 and T2 other than *, (array T1) and (array T2) are two different type spec-

ifiers that always refer to the same sets of things if and only if they refer to arrays of ex-

actly the same specialized representation, i.e., if (upgraded-array-element-type > T1) and
(upgraded-array-element-type ’ T2) return two different type specifiers that always refer

to the same sets of objects. This is another way of saying that ¢ (array type-specifier) and

‘(array , (upgraded-array-element-type ’type-specifier)) refer to the same set of specialized array
representations. For all T1 and T2 other than *, the intersection of (array T1) and (array T2)
is the empty set if and only if they refer to arrays of different, distinct specialized representations.

Therefore,
(subtypep ’(array T1) ’(array T2)) — true
if and only if

(upgraded-array-element-type ’T1) and
(upgraded-array-element-type ’T2)

Types and Classes 4—-35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

subtypep

return two different type specifiers that always refer to the same sets of objects.
For all type-specifiers T1 and T2 other than x*,

(subtypep ’(complex T1) ’(complex T2)) — true, true
if:

T1 is a subtype of T2, or

2. (upgraded-complex-part-type ’ T1) and (upgraded-complex-part-type ’ T2) return
two different type specifiers that always refer to the same sets of objects; in this case,
(complex T1) and (complex T2) both refer to the same specialized representation.

The values are false and true otherwise.
The form

(subtypep °’(complex single-float) ’(complex float))
must return true in all implementations, but

(subtypep ’(array single-float) ’(array float))

returns true only in implementations that do not have a specialized array representation for
single floats distinct from that for other floats.

Examples:

(subtypep ’compiled-function ’function) — true, true

(subtypep ’null °’list) — true, true

(subtypep ’null ’symbol) — true, true

(subtypep ’integer ’string) — false, true

(subtypep ’(satisfies dummy) nil) — false, implementation-dependent
(subtypep ’(integer 1 3) ’(integer 1 4)) — {rue, true

(subtypep °’(integer (0) (0)) °’nil) — true, true

(subtypep ’nil ’(integer (0) (0))) — true, true

(subtypep ’ (integer (0) (0)) ’(member)) — true, true ;or false, false
(subtypep ’ (member) ’nil) — true, true ;or false, false

(subtypep ’nil ’(member)) — true, true ;or false, false

Let <aet-x> and <aet-y> be two distinct type specifiers that do not always refer to the same sets
of objects in a given implementation, but for which make-array, will return an object of the same
array type.

Thus, in each case,

(subtypep (array-element-type (make-array O :element-type ’<aet-x>))
(array-element-type (make-array O :element-type ’<aet-y>)))
— true, true

4-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(subtypep (array-element-type (make-array O :element-type ’<aet-y>))
(array-element-type (make-array O :element-type ’<aet-x>)))
— true, true

If (array <aet-x>) and (array <aet-y>) are different names for exactly the same set of objects,
these names should always refer to the same sets of objects. That implies that the following set of
tests are also true:

(subtypep ’(array <aet-x>) ’(array <aet-y>)) — true, true
(subtypep ’(array <aet-y>) ’(array <aet-x>)) — true, true

See Also:
Section 4.2 (Types)

Notes:

The small differences between the subtypep specification for the array and complex types are
necessary because there is no creation function for compleres which allows the specification of the
resultant part type independently of the actual types of the parts. Thus in the case of the type
complex, the actual type of the parts is referred to, although a number can be a member of more
than one type. For example, 17 is of type (mod 18) as well as type (mod 256) and type integer; and
2.3£5 is of type single-float as well as type float.

typ e-of Function

Syntax:
type-of object — typespec

Arguments and Values:
object—an object.

typespec—a type specifier.
Description:
Returns a type specifier, typespec, for a type that has the object as an element. The typespec
satisfies the following:
1. For any object that is an element of some built-in type:

a. the type returned is a recognizable subtype of that built-in type.

b. the type returned does not involve and, eql, member, not, or, satisfies, or values.

Types and Classes 4—-37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type-of

2. For all objects, (typep object (type-of object)) returns true. Implicit in this is that type
specifiers which are not valid for use with typep, such as the list form of the function

type specifier, are never returned by type-of.

3. The type returned by type-of is always a recognizable subtype of the class returned by

class-of. That is,

(subtypep (type-of object) (class-of object)) — true, true

4. For objects of metaclass structure-class or standard-class, and for conditions, type-of
returns the proper name of the class returned by class-of if it has a proper name, and
otherwise returns the class itself. In particular, for objects created by the constructor
function of a structure defined with defstruct without a :type option, type-of returns the
structure name; and for objects created by make-condition, the typespec is the name of

the condition type.

5. For each of the types short-float, single-float, double-float, or long-float of which the

object is an element, the typespec is a recognizable subtype of that type.
Examples:

(type-of ’a) — SYMBOL
(type-of ’(1 . 2))

— CONS

2% (CONS FIXNUM FIXNUM)
(type-of #c(0 1))

— COMPLEX

%% (COMPLEX INTEGER)
(defstruct temp-struct x y z) — TEMP-STRUCT
(type-of (make-temp-struct)) — TEMP-STRUCT
(type-of "abc")

— STRING

%% (STRING 3)
(subtypep (type-of "abc") ’string) — true, true
(type-of (expt 2 40))

— BIGNUM

%% INTEGER

N (INTEGER 1099511627776 1099511627776)

2 SYSTEM: : TWO-WORD-BIGNUM

2 FIXNUM
(subtypep (type-of 112312) ’integer) — true, true
(defvar *foo* (make-array 5 :element-type t)) — *F00*
(class-name (class-of *foo*)) — VECTOR

4-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(type-of *foo*)
— VECTOR
2. (VECTOR T 5)

See Also:
array-element-type, class-of, defstruct, typecase, typep, Section 4.2 (Types)

Notes:

Implementors are encouraged to arrange for type-of to return a portable value.

typep Function

Syntax:

typep object type-specifier &optional environment — generalized-boolean

Arguments and Values:
object—an object.

type-specifier—any type specifier except values, or a type specifier list whose first element is either
function or values.

environment—an environment object. The default is nil, denoting the null lexical environment
and the and current global environment.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of the type specified by type-specifier; otherwise, returns false.

A type-specifier of the form (satisfies fn) is handled by applying the function fn to object.

(typep object ’ (array type-specifier)), where type-specifier is not *, returns true if and only

if object is an array that could be the result of supplying type-specifier as the :element-type
argument to make-array. (array *) refers to all arrays regardless of element type,

while (array type-specifier) refers only to those arrays that can result from giving type-

specifier as the :element-type argument to make-array. A similar interpretation applies to
(simple-array type-specifier) and (vector type-specifier). See Section 15.1.2.1 (Array Upgrading).

(typep object ’ (complex type-specifier)) returns true for all compler numbers that can result
from giving numbers of type type-specifier to the function complex, plus all other complex
numbers of the same specialized representation. Both the real and the imaginary parts of any
such compler number must satisfy:

(typep realpart ’type-specifier)

Types and Classes 4—39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typep

(typep imagpart ’type-specifier)
See the function upgraded-complex-part-type.
Examples:

(typep 12 ’integer) — true

(typep (1+ most-positive-fixnum) ’fixnum) — false

(typep nil t) — true

(typep nil nil) — false

(typep 1 ’(mod 2)) — ftrue

(typep #c(1 1) ’(complex (eql 1))) — true

;; To understand this next example, you might need to refer to

;3 Section 12.1.5.3 (Rule of Canonical Representation for Complex Rationals).
(typep #c(0 0) ’(complex (eql 0))) — false

Let A, and A, be two type specifiers that denote different types, but for which
(upgraded-array-element-type ’A,)

and
(upgraded-array-element-type ’A,)

denote the same type. Notice that

(typep (make-array O :element-type ’A;) ’(array A;)) — {rue
(typep (make-array O :element-type ’A,) ’(array A,)) — true
(typep (make-array O :element-type ’A;) ’(array A,)) — lrue
(typep (make-array O :element-type ’A,) ’(array A;)) — frue

Exceptional Situations:

An error of type error is signaled if type-specifier is values, or a type specifier list whose first
element is either function or values.

The consequences are undefined if the type-specifier is not a type specifier.

See Also:
type-of, upgraded-array-element-type, upgraded-complex-part-type, Section 4.2.3 (Type
Specifiers)

Notes:

Implementations are encouraged to recognize and optimize the case of (typep x (the class y)),
since it does not involve any need for expansion of deftype information at runtime.

4-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

type-error Condition Type

Class Precedence List:

type-error, error, serious-condition, condition, t

Description:

The type type-error represents a situation in which an object is not of the expected type.
The “offending datum” and “expected type” are initialized by the initialization arguments
named :datum and :expected-type to make-condition, and are accessed by the functions
type-error-datum and type-error-expected-type.

See Also:

type-error-datum, type-error-expected-type

type-error-datum, type-error-expected-type Function

Syntax:

type-error-datum condition — datum
type-error-expected-type condition — expected-type

Arguments and Values:
condition—a condition of type type-error.

datum—an object.
expected-type—a type specifier.

Description:
type-error-datum returns the offending datum in the situation represented by the condition.

type-error-expected-type returns the expected type of the offending datum in the situation
represented by the condition.

Examples:

(defun fix-digits (condition)
(check-type condition type-error)
(let* ((digits ’(zero one two three four
five six seven eight nine))

Types and Classes 4—41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(val (position (type-error-datum condition) digits)))
(if (and val (subtypep ’fixnum (type-error-expected-type condition)))
(store-value 7))))

(defun foo (x)
(handler-bind ((type-error #’fix-digits))
(check-type x number)

(+ x 3)))
(foo ’seven)
— 10
See Also:

type-error, Chapter 9 (Conditions)

simple-type-error Condition Type

Class Precedence List:

simple-type-error, simple-condition, type-error, error, serious-condition, condition, t

Description:

Conditions of type simple-type-error are like conditions of type type-error, except that they
provide an alternate mechanism for specifying how the condition is to be reported; see the type
simple-condition.

See Also:

simple-condition, simple-condition-format-control, simple-condition-format-arguments,
type-error-datum, type-error-expected-type

4-42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

5. Data and Control Flow

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Data and Control Flow iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1 Generalized Reference

5.1.1

Overview of Places and Generalized Reference

A generalized reference is the use of a form, sometimes called a place, as if it were a variable
that could be read and written. The value of a place is the object to which the place form eval-
uates. The value of a place can be changed by using setf. The concept of binding a place is not
defined in Common Lisp, but an implementation is permitted to extend the language by defining
this concept.

Figure 5-1 contains examples of the use of setf. Note that the values returned by evaluating the
forms in column two are not necessarily the same as those obtained by evaluating the forms in
column three. In general, the exact macro expansion of a setf form is not guaranteed and can
even be implementation-dependent; all that is guaranteed is that the expansion is an update form
that works for that particular implementation, that the left-to-right evaluation of subforms is
preserved, and that the ultimate result of evaluating setf is the value or values being stored.

Access function Update Function Update using setf

X (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x) (set x datum) (setf (symbol-value x) datum)

Figure 5—1. Examples of setf

Figure 5-2 shows operators relating to places and generalized reference.

assert defsetf push
ccase get-setf-expansion remf
ctypecase getf rotatef
decf incf setf
define-modify-macro pop shiftf
define-setf-expander psetf

Figure 5—2. Operators relating to places and generalized reference.

Some of the operators above manipulate places and some manipulate setf expanders. A setf
expansion can be derived from any place. New setf expanders can be defined by using defsetf and
define-setf-expander.

Data and Control Flow 5—1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.1.1 Ewvaluation of Subforms to Places

The following rules apply to the evaluation of subforms in a place:

1.

4.

The evaluation ordering of subforms within a place is determined by the order specified
by the second value returned by get-setf-expansion. For all places defined by this
specification (e.g., getf, 1db, ...), this order of evaluation is left-to-right. When a place is
derived from a macro expansion, this rule is applied after the macro is expanded to find
the appropriate place.

Places defined by using defmacro or define-setf-expander use the evaluation order
defined by those definitions. For example, consider the following:

(defmacro wrong-order (x y) ‘(getf ,y ,x))

This following form evaluates place2 first and then placel because that is the order they
are evaluated in the macro expansion:

(push value (wrong-order placel place2))

For the macros that manipulate places (push, pushnew, remf, incf, decf, shiftf,
rotatef, psetf, setf, pop, and those defined by define-modify-macro) the subforms

of the macro call are evaluated exactly once in left-to-right order, with the subforms of
the places evaluated in the order specified in (1).

push, pushnew, remf, incf, decf, shiftf, rotatef, psetf, pop evaluate all subforms before
modifying any of the place locations. setf (in the case when setf has more than two
arguments) performs its operation on each pair in sequence. For example, in

(setf placel valuel place2 value2 ...)

the subforms of placel and valuel are evaluated, the location specified by placet is
modified to contain the value returned by valuel, and then the rest of the setf form is
processed in a like manner.

For check-type, ctypecase, and ccase, subforms of the place are evaluated once as in (1),
but might be evaluated again if the type check fails in the case of check-type or none of

the cases hold in ctypecase and ccase.

For assert, the order of evaluation of the generalized references is not specified.

Rules 2, 3 and 4 cover all standardized macros that manipulate places.

5.1.1.1.1 Examples of Evaluation of Subforms to Places

(let ((ref2 (list ’(0))))
(push (progn (princ "1") ’ref-1)

5-2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(car (progn (princ "2") ref2))))
> 12
— (REF1)

(let (x)
(push (setq x (list ’a))
(car (setq x (list ’Db))))
x)
— (((a) . B)

push first evaluates (setq x (list ’a)) — (a), then evaluates (setq x (list ’b)) — (b), then
modifies the car of this latest value to be ((a) . b).

5.1.1.2 Setf Expansions
Sometimes it is possible to avoid evaluating subforms of a place multiple times or in the wrong

order. A setf expansion for a given access form can be expressed as an ordered collection of five
objects:

List of temporary variables

a list of symbols naming temporary variables to be bound sequentially, as if by let*, to
values resulting from value forms.

List of value forms

a list of forms (typically, subforms of the place) which when evaluated yield the values to
which the corresponding temporary variables should be bound.

List of store variables

a list of symbols naming temporary store variables which are to hold the new values that
will be assigned to the place.

Storing form

a form which can reference both the temporary and the store variables, and which
changes the value of the place and guarantees to return as its values the values of the
store variables, which are the correct values for setf to return.

Accessing form

a form which can reference the temporary variables, and which returns the value of the
place.

The value returned by the accessing form is affected by execution of the storing form, but either
of these forms might be evaluated any number of times.

Data and Control Flow 5—3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

It is possible to do more than one setf in parallel via psetf, shiftf, and rotatef. Because of
this, the setf expander must produce new temporary and store variable names every time. For
examples of how to do this, see gensym.

For each standardized accessor function F, unless it is explicitly documented otherwise, it is
implementation-dependent whether the ability to use an F form as a setf place is implemented by
a setf expander or a setf function. Also, it follows from this that it is implementation-dependent
whether the name (setf F) is fbound.

5.1.1.2.1 Examples of Setf Expansions
Examples of the contents of the constituents of setf expansions follow.

For a variable x:

O ;list of temporary variables
O ;list of value forms

(g0001) ;list of store variables
(setq x g0001) ;storing form

X ;accessing form

Figure 5—-3. Sample Setf Expansion of a Variable

For (car exp):

(g0002) ;list of temporary variables
(exp) ;list of value forms

(g0003) ;list of store variables
(progn (rplaca g0002 g0003) g0003) ;storing form

(car g0002) ;accessing form

Figure 5—4. Sample Setf Expansion of a CAR Form

For (subseq seq s e):

(g0004 g0005 g0006) ;list of temporary variables
(seq s e) ;list of value forms
(g0007) ;list of store variables

(progn (replace g0004 g0007 :startl g0005 :endl g0006) gO007)
;storing form
(subseq g0004 g0005 g0006) ; accessing form

Figure 5-5. Sample Setf Expansion of a SUBSEQ Form

5-4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

In some cases, if a subform of a place is itself a place, it is necessary to expand the subform in
order to compute some of the values in the expansion of the outer place. For (1db bs (car exp)):

(g0001 g0002) ;list of temporary variables
(bs exp) ;list of value forms
(g0003) ;list of store variables

(progn (rplaca g0002 (dpb g0003 g0001 (car g0002))) g0003)
;storing form
(1db g0001 (car g0002)) ; accessing form

Figure 5—6. Sample Setf Expansion of a LDB Form

5.1.2 Kinds of Places

Several kinds of places are defined by Common Lisp; this section enumerates them. This set can
be extended by implementations and by programmer code.

5.1.2.1 Variable Names as Places

The name of a lezical variable or dynamic variable can be used as a place.

5.1.2.2 Function Call Forms as Places

A function form can be used as a place if it falls into one of the following categories:

e A function call form whose first element is the name of any one of the functions in Figure
5-7.

Data and Control Flow 5-5

Version 15.17R, X3J13/94-101R.

Fri 12-Aug-1994 6:35pm EDT

aref cdadr get

bit cdar gethash

caaaar cddaar logical-pathname-translations
caaadr cddadr macro-function
caaar cddar ninth

caadar cdddar nth

caaddr cddddr readtable-case
caadr cdddr rest

caar cddr row-major-aref
cadaar cdr sbit

cadadr char schar

cadar class-name second

caddar compiler-macro-function seventh

cadddr documentation sixth

caddr eighth slot-value

cadr elt subseq

car fdefinition svref

cdaaar fifth symbol-function
cdaadr fill-pointer symbol-plist
cdaar find-class symbol-value
cdadar first tenth

cdaddr fourth third

Figure 5-7. Functions that setf can be used with—1

In the case of subseq, the replacement value must be a sequence whose elements might
be contained by the sequence argument to subseq, but does not have to be a sequence of
the same type as the sequence of which the subsequence is specified. If the length of the
replacement value does not equal the length of the subsequence to be replaced, then the
shorter length determines the number of elements to be stored, as for replace.

e A function call form whose first element is the name of a selector function constructed by
defstruct. The function name must refer to the global function definition, rather than a
locally defined function.

e A function call form whose first element is the name of any one of the functions in Figure
5-8, provided that the supplied argument to that function is in turn a place form; in this
case the new place has stored back into it the result of applying the supplied “update”
function.

5-6 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.

Fri 12-Aug-1994 6:35pm EDT
Function name Argument that is a place Update function used
1db second dpb
mask-field second deposit-field
getf first implementation-dependent

Figure 5—8. Functions that setf can be used with—2

During the setf expansion of these forms, it is necessary to call get-setf-expansion in

order to

figure out how the inner, nested generalized variable must be treated.

The information from get-setf-expansion is used as follows.

1db

In a form such as:
(setf (1db byte-spec place-form) value-form)

the place referred to by the place-form must always be both read and written;
note that the update is to the generalized variable specified by place-form, not to
any object of type integer.

Thus this setf should generate code to do the following:

Evaluate byte-spec (and bind it into a temporary variable).
Bind the temporary variables for place-form.

Evaluate value-form (and bind its value or values into the store variable).

Do the read from place-form.

5. Do the write into place-form with the given bits of the integer fetched in
step 4 replaced with the value from step 3.

If the evaluation of value-form in step 3 alters what is found in place-form, such as
setting different bits of integer, then the change of the bits denoted by byte-spec
is to that altered integer, because step 4 is done after the value-form evaluation.
Nevertheless, the evaluations required for binding the temporary variables are
done in steps 1 and 2, and thus the expected left-to-right evaluation order is seen.
For example:

(setq integer #x69) — #x69
(rotatef (1db (byte 4 4) integer)
(1db (byte 4 0) integer))
integer — #x96
;35 This example is trying to swap two independent bit fields
;55 in an integer. Note that the generalized variable of

Data and Control Flow 5—7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;3; interest here is just the (possibly local) program variable
;35 integer.

mask-field

This case is the same as 1db in all essential aspects.

getf
In a form such as:
(setf (getf place-form ind-form) value-form)

the place referred to by place-form must always be both read and written; note
that the update is to the generalized variable specified by place-form, not neces-
sarily to the particular list that is the property list in question.

Thus this setf should generate code to do the following:

Bind the temporary variables for place-form.
Evaluate ind-form (and bind it into a temporary variable).

Evaluate value-form (and bind its value or values into the store variable).

Do the read from place-form.

5. Do the write into place-form with a possibly-new property list obtained
by combining the values from steps 2, 3, and 4. (Note that the phrase
“possibly-new property list” can mean that the former property list is
somehow destructively re-used, or it can mean partial or full copying of
it. Since either copying or destructive re-use can occur, the treatment of
the resultant value for the possibly-new property list must proceed as if
it were a different copy needing to be stored back into the generalized
variable.)

If the evaluation of value-form in step 3 alters what is found in place-form, such
as setting a different named property in the list, then the change of the property
denoted by ind-form is to that altered list, because step 4 is done after the value-
form evaluation. Nevertheless, the evaluations required for binding the temporary
variables are done in steps 1 and 2, and thus the expected left-to-right evaluation
order is seen.

For example:

(setq s (setq r (list (list ’a 1 ’b 2 ’c 3)))) — (a1l b 2 c 3))
(setf (getf (car r) ’b)

(progn (setq r nil) 6)) — 6
r — NIL

5-8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.2.3

5.1.2.4

s — ((A1B6C 3))

;5; Note that the (setq r nil) does not affect the actions of
;33 the SETF because the value of R had already been saved in
;33 a temporary variable as part of the step 1. Only the CAR
;55 of this value will be retrieved, and subsequently modified
;35 after the value computation.

VALUES Forms as Places

A values form can be used as a place, provided that each of its subforms is also a place form.
A form such as

(setf (values place-1 ...place-n) values-form)

does the following:

The subforms of each nested place are evaluated in left-to-right order.

2. The values-form is evaluated, and the first store variable from each place is bound to its
return values as if by multiple-value-bind.

3. If the setf expansion for any place involves more than one store variable, then the addi-
tional store variables are bound to nil.

4. The storing forms for each place are evaluated in left-to-right order.

The storing form in the setf expansion of values returns as multiple valuess the values of the store
variables in step 2. That is, the number of values returned is the same as the number of place
forms. This may be more or fewer values than are produced by the values-form.

THE Forms as Places

A the form can be used as a place, in which case the declaration is transferred to the newvalue
form, and the resulting setf is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))
is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

Data and Control Flow 5—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.2.5

5.1.2.6

5.1.2.7

5.1.2.8

APPLY Forms as Places

The following situations involving setf of apply must be supported:

e (setf (apply #’aref array {subscript}* more-subscripts) new-element)
e (setf (apply #’bit array {subscript}* more-subscripts) new-element)

o (setf (apply #’sbit array {subscript}* more-subscripts) new-element)

In all three cases, the element of array designated by the concatenation of subscripts and more-
subscripts (i.e., the same element which would be read by the call to apply if it were not part of
a setf form) is changed to have the value given by new-element. For these usages, the function
name (aref, bit, or sbit) must refer to the global function definition, rather than a locally defined
function.

No other standardized function is required to be supported, but an implementation may define
such support. An implementation may also define support for implementation-defined operators.

If a user-defined function is used in this context, the following equivalence is true, except that
care is taken to preserve proper left-to-right evaluation of argument subforms:

(setf (apply #’name {arg}*) val)
= (apply #’(setf name) val {arg}*)

Setf Expansions and Places

Any compound form for which the operator has a setf expander defined can be used as a place.
The operator must refer to the global function definition, rather than a locally defined function or
macro.

Macro Forms as Places

A macro form can be used as a place, in which case Common Lisp expands the macro form as if
by macroexpand-1 and then uses the macro expansion in place of the original place. Such macro
expansion is attempted only after exhausting all other possibilities other than expanding into a
call to a function named (setf reader).

Symbol Macros as Places

A reference to a symbol that has been established as a symbol macro can be used as a place. In
this case, setf expands the reference and then analyzes the resulting form.

5-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.1.2.9 Other Compound Forms as Places

For any other compound form for which the operator is a symbol f, the setf form expands into a
call to the function named (setf f). The first argument in the newly constructed function form
is newvalue and the remaining arguments are the remaining elements of place. This expansion
occurs regardless of whether f or (setf) is defined as a function locally, globally, or not at all.
For example,

(setf (f argl arg2 ...) new-value)
expands into a form with the same effect and value as
(let ((#:temp-1 argl) ;force correct order of evaluation

(#:temp-2 arg2)

(#:temp-0 new-value))
(funcall (function (setf f)) #:temp-O #:temp-1 #:temp-2...))

A function named (setf f) must return its first argument as its only value in order to preserve
the semantics of setf.

5.1.3 Treatment of Other Macros Based on SETF

For each of the “read-modify-write” operators in Figure 5-9, and for any additional macros
defined by the programmer using define-modify-macro, an exception is made to the normal rule
of left-to-right evaluation of arguments. Evaluation of argument forms occurs in left-to-right
order, with the exception that for the place argument, the actual read of the “old value” from
that place happens after all of the argument form evaluations, and just before a “new value” is
computed and written back into the place.

Specifically, each of these operators can be viewed as involving a form with the following general
syntax:

Coperator {preceding-form}* place {following-form}*)
The evaluation of each such form proceeds like this:

Evaluate each of the preceding-forms, in left-to-right order.

FEvaluate the subforms of the place, in the order specified by the second value of the setf
expansion for that place.

[N

Fvaluate each of the following-forms, in left-to-right order.
Read the old value from place.

Compute the new value.

S e W

Store the new value into place.

Data and Control Flow 5-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

decf pop pushnew
incf push remf

Figure 5-9. Read-Modify-Write Macros

5-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

5.2 Transfer of Control to an Exit Point

When a transfer of control is initiated by go, return-from, or throw the following events occur in
order to accomplish the transfer of control. Note that for go, the ezit point is the form within the
tagbody that is being executed at the time the go is performed; for return-from, the exit point is
the corresponding block form; and for throw, the exit point is the corresponding catch form.

1. Intervening exit points are “abandoned” (i.e., their extent ends and it is no longer valid
to attempt to transfer control through them).

2. The cleanup clauses of any intervening unwind-protect clauses are evaluated.

3. Intervening dynamic bindings of special variables, catch tags, condition handlers, and
restarts are undone.

4. The extent of the exit point being invoked ends, and control is passed to the target.

The extent of an exit being “abandoned” because it is being passed over ends as soon as the
transfer of control is initiated. That is, event 1 occurs at the beginning of the initiation of the
transfer of control. The consequences are undefined if an attempt is made to transfer control to
an exit point whose dynamic extent has ended.

Events 2 and 3 are actually performed interleaved, in the order corresponding to the reverse
order in which they were established. The effect of this is that the cleanup clauses of an
unwind-protect see the same dynamic bindings of variables and catch tags as were visible when
the unwind-protect was entered.

Event 4 occurs at the end of the transfer of control.

Data and Control Flow 5—13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

apply Function

Syntax:

apply function &rest args™ — {result}*

Arguments and Values:
function—a function designator.

args—a spreadable argument list designator.
results—the values returned by function.

Description:
Applies the function to the args.

When the function receives its arguments via &rest, it is permissible (but not required) for

the implementation to bind the rest parameter to an object that shares structure with the last
argument to apply. Because a function can neither detect whether it was called via apply nor
whether (if so) the last argument to apply was a constant, conforming programs must neither rely
on the list structure of a rest list to be freshly consed, nor modify that list structure.

setf can be used with apply in certain circumstances; see Section 5.1.2.5 (APPLY Forms as
Places).

Examples:

(setq £ ’+) — +

(apply £ (1 2)) — 3

(setq £ #’-) — #<FUNCTION ->

(apply £ ’(1 2)) — -1

(apply #’max 35 °(27 3)) — 7

(apply ’cons ’((+ 2 3) 4)) — ((+ 23) . 4)
(apply #’+ °(0)) — 0

(defparameter *some-list* ’(a b c))
(defun strange-test (&rest x) (eq x *some-listx*))
(apply #’strange-test *some-list*) — implementation-dependent

(defun bad-boy (&rest x) (rplacd x ’y))
(bad-boy ’a ’b ’c) has undefined consequences.
(apply #’bad-boy *some-list*) has undefined consequences.

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(if double (concatenate (type-of v) v v) v)))

5-14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(foo 4 :initial-contents ’(a b c d) :double t)
— #(A B CD A B CD)

See Also:
funcall, fdefinition, function, Section 3.1 (Evaluation), Section 5.1.2.5 (APPLY Forms as Places)

defun Macro

Syntax:

defun function-name lambda-list [{declaration}* | documentation] {form}*
— function-name

Arguments and Values:
function-name—a function name.

lambda-list—an ordinary lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

forms—an implicit progn.

block-name—the function block name of the function-name.

Description:

Defines a new function named function-name in the global environment. The body of the function
defined by defun consists of forms; they are executed as an implicit progn when the function is
called. defun can be used to define a new function, to install a corrected version of an incorrect
definition, to redefine an already-defined function, or to redefine a macro as a function.

defun implicitly puts a block named block-name around the body forms (but not the forms in the
lambda-list) of the function defined.

Documentation is attached as a documentation string to name (as kind function) and to the
function object.

Evaluating defun causes function-name to be a global name for the function specified by the
lambda expression

(lambda /lambda-list
[{declaration}* | documentation]
(block block-name {form}*))

processed in the lexical environment in which defun was executed.

Data and Control Flow 5—15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defun

(None of the arguments are evaluated at macro expansion time.)

defun is not required to perform any compile-time side effects. In particular, defun does not
make the function definition available at compile time. An implementation may choose to store
information about the function for the purposes of compile-time error-checking (such as checking
the number of arguments on calls), or to enable the function to be expanded inline.

Examples:

(defun recur (x)

(when (> x 0)
(recur (1- x)))) — RECUR

(defun ex (a b &optional c (d 66) &rest keys &key test (start 0))
(list a b ¢ d keys test start)) — EX

(ex 1 2) — (1 2 NIL 66 NIL NIL 0)

(ex 1 2 3 4 :test ’equal :start 50)

— (1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)
(ex :test 1 :start 2) — (:TEST 1 :START 2 NIL NIL O)

;3 This function assumes its callers have checked the types of the
;; arguments, and authorizes the compiler to build in that assumption.
(defun discriminant (a b c)
(declare (number a b c))
"Compute the discriminant for a quadratic equation."
(- (* bb) (*x 4 ac))) — DISCRIMINANT
(discriminant 1 2/3 -2) — 76/9

;; This function assumes its callers have not checked the types of the
;; arguments, and performs explicit type checks before making any assumptions.
(defun careful-discriminant (a b c)

"Compute the discriminant for a quadratic equation."

(check-type a number)

(check-type b number)

(check-type c number)

(locally (declare (number a b c))

(- (*x b b) (¥4 ac)))) — CAREFUL-DISCRIMINANT

(careful-discriminant 1 2/3 -2) — 76/9

See Also:

flet, labels, block, return-from, declare, documentation, Section 3.1 (Evaluation), Section 3.4.1
(Ordinary Lambda Lists), Section 3.4.11 (Syntactic Interaction of Documentation Strings and
Declarations)

Notes:

return-from can be used to return prematurely from a function defined by defun.

5-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Additional side effects might take place when additional information (typically debugging infor-
mation) about the function definition is recorded.

fdefinition Accessor

Syntax:

fdefinition function-name — definition

(setf (fdefinition function-name) new-definition)

Arguments and Values:
function-name—a function name. In the non-setf case, the name must be fbound in the global
environment.

definition—Current global function definition named by function-name.
new-definition—a function.

Description:
fdefinition accesses the current global function definition named by function-name. The definition
may be a function or may be an object representing a special form or macro. The value returned
by fdefinition when fboundp returns true but the function-name denotes a macro or special form
is not well-defined, but fdefinition does not signal an error.

Exceptional Situations:
Should signal an error of type type-error if function-name is not a function name.

An error of type undefined-function is signaled in the non-setf case if function-name is not
fbound.

See Also:

fboundp, fmakunbound, macro-function, special-operator-p, symbol-function

Notes:

fdefinition cannot access the value of a lexical function name produced by flet or labels; it can
access only the global function value.

setf can be used with fdefinition to replace a global function definition when the function-name’s

function definition does not represent a special form. setf of fdefinition requires a function as the
new value. It is an error to set the fdefinition of a function-name to a symbol, a list, or the value

returned by fdefinition on the name of a macro or special form.

Data and Control Flow 5—17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

fboundp

fboundp Function

Syntax:

fboundp name — generalized-boolean

Pronunciation:
[ef ' baiindpe]

Arguments and Values:
name—a function name.

generalized-boolean—a, generalized boolean.

Description:
Returns true if name is fbound; otherwise, returns false.

Examples:

(fboundp ’car) — {rue
(fboundp ’nth-value) — false
(fboundp ’with-open-file) — {rue
(fboundp ’unwind-protect) — true
(defun my-function (x) x) — MY-FUNCTION
(fboundp ’my-function) — {rue
(let ((saved-definition (symbol-function ’my-function)))
(unwind-protect (progn (fmakunbound ’my-function)
(fboundp ’my-function))
(setf (symbol-function ’my-function) saved-definitiomn)))
— false
(fboundp ’my-function) — {rue
(defmacro my-macro (x) ¢’,x) — MY-MACRO
(fboundp ’my-macro) — true
(fmakunbound ’my-function) — MY-FUNCTION
(fboundp ’my-function) — false
(flet ((my-function (x) x))
(fboundp ’my-function)) — false

Exceptional Situations:
Should signal an error of type type-error if name is not a function name.

See Also:

symbol-function, fmakunbound, fdefinition

5-18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

It is permissible to call symbol-function on any symbol that is fbound.

fboundp is sometimes used to “guard” an access to the function cell, as in: (if (fboundp x)
(symbol-function x))

Defining a setf expander F does not cause the setf function (setf F) to become defined.

fmakunb ound Function

Syntax:

fmakunbound name — name

Pronunciation:
[ef ' maken,baund| or [,ef ' maken,batind]

Arguments and Values:
name—a function name.

Description:
Removes the function or macro definition, if any, of name in the global environment.

Examples:

(defun add-some (x) (+ x 19)) — ADD-SOME
(fboundp ’add-some) — {rue
(flet ((add-some (x) (+ x 37)))
(fmakunbound ’add-some)
(add-some 1)) — 38
(fboundp ’add-some) — false

Exceptional Situations:
Should signal an error of type type-error if name is not a function name.

The consequences are undefined if name is a special operator.

See Also:

fboundp, makunbound

Data and Control Flow 5—19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

ﬂet, labels, macrolet Special Operator

Syntax:

flet ({(function-name lambda-list [{local-declaration}* | local-documentation] {local-form}*)}*)
{declaration}* {form}*

— {result}*

labels ({(function-name lambda-list [{local-declaration}* | local-documentation] {local-form}*)}*)
{declaration}* {form}*

— {result}*

macrolet ({(name lambda-list [{local-declaration}* | local-documentation] {local-form}*)}*)
{declaration}* {form}*

— {result}*

Arguments and Values:
function-name—a function name.

name—a, symbol.

lambda-list—a lambda list; for flet and labels, it is an ordinary lambda list; for macrolet, it is a
macro lambda list.

local-declaration—a declare expression; not evaluated.
declaration—a declare expression; not evaluated.
local-documentation—a string; not evaluated.
local-forms, forms—an implicit progn.

results—the values of the forms.

Description:

flet, labels, and macrolet define local functions and macros, and execute forms using the local
definitions. Forms are executed in order of occurrence.

The body forms (but not the lambda list) of each function created by flet and labels and each
macro created by macrolet are enclosed in an implicit block whose name is the function block
name of the function-name or name, as appropriate.

The scope of the declarations between the list of local function/macro definitions and the body
forms in flet and labels does not include the bodies of the locally defined functions, except that

5-20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

for labels, any inline, notinline, or ftype declarations that refer to the locally defined functions
do apply to the local function bodies. That is, their scope is the same as the function name that
they affect. The scope of these declarations does not include the bodies of the macro expander
functions defined by macrolet.

flet

flet defines locally named functions and executes a series of forms with these definition
bindings. Any number of such local functions can be defined.

The scope of the name binding encompasses only the body. Within the body of flet,
function-names matching those defined by flet refer to the locally defined functions rather
than to the global function definitions of the same name. Also, within the scope of flet,
global setf expander definitions of the function-name defined by flet do not apply. Note
that this applies to (defsetf f ...), not (defmethod (setf f) ...).

The names of functions defined by flet are in the lexical environment; they retain their
local definitions only within the body of flet. The function definition bindings are visible
only in the body of flet, not the definitions themselves. Within the function definitions,
local function names that match those being defined refer to functions or macros defined
outside the flet. flet can locally shadow a global function name, and the new definition
can refer to the global definition.

Any local-documentation is attached to the corresponding local function (if one is actually
created) as a documentation string.

labels

labels is equivalent to flet except that the scope of the defined function names for labels
encompasses the function definitions themselves as well as the body.

macrolet
macrolet establishes local macro definitions, using the same format used by defmacro.

Within the body of macrolet, global setf expander definitions of the names defined by the
macrolet do not apply; rather, setf expands the macro form and recursively process the
resulting form.

The macro-expansion functions defined by macrolet are defined in the lexical en-
vironment in which the macrolet form appears. Declarations and macrolet and
symbol-macrolet definitions affect the local macro definitions in a macrolet, but the
consequences are undefined if the local macro definitions reference any local variable or
function bindings that are visible in that lexical environment.

Any local-documentation is attached to the corresponding local macro function as a
documentation string.

Data and Control Flow 5—21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

Examples:

(defun foo (x flag)
(macrolet ((fudge (z)
;The parameters x and flag are not accessible
; at this point; a reference to flag would be to
; the global variable of that name.
‘(if flag (x ,z ,z) ,2z)))
;The parameters x and flag are accessible here.
+ x
(fudge x)
(fudge (+ x 1)))))

(defun foo (x flag)
(+ x
(if flag (* x x) x)
(if flag (* (+ x 1) (+ x 1)) (+ x 1))))

after macro expansion. The occurrences of x and flag legitimately refer to the parameters of the

function foo because those parameters are visible at the site of the macro call which produced the
expansion.

(flet ((fletl (m) (+ n n)))
(flet ((fletl (n) (+ 2 (fletl mn))))
(fletl 2))) — 6

(defun dummy-function () ’top-level) — DUMMY-FUNCTION
(funcall #’dummy-function) — TOP-LEVEL
(flet ((dummy-function () ’shadow))
(funcall #’dummy-function)) — SHADOW
(eq (funcall #’dummy-function) (funcall ’dummy-function))
— true
(flet ((dummy-function () ’shadow))
(eq (funcall #’dummy-function)
(funcall ’dummy-function)))
— false

(defun recursive-times (k n)
(labels ((temp (n)
(if (zerop m) 0 (+ k (temp (1- n))))))
(temp n))) — RECURSIVE-TIMES
(recursive-times 2 3) — 6

(defmacro mlets (x &environment env)

(let ((form ‘(babbit ,x)))
(macroexpand form env))) — MLETS

5-22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

flet, labels, macrolet

(macrolet ((babbit (z) ‘(+ ,z ,z))) (mlets 5)) — 10

(flet ((safesqgrt (x) (sqrt (abs x))))
;; The safesqrt function is used in two places.
(safesqrt (apply #’+ (map ’list #’safesqrt ’(1 2 3 4 5 6)))))
— 3.291173

(defun integer-power (n k)
(declare (integer n))
(declare (type (integer 0 *) k))
(labels ((exptO (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (exptO (¥ x x) (floor k 2) (* x a))))))
(expt0 n k 1))) — INTEGER-POWER

(defun example (y 1)
(flet ((attach (x)
(setq 1 (append 1 (1list x)))))
(declare (inline attach))
(dolist (x y)
(unless (null (cdr x))
(attach x)))
1))

(example ’((a apple apricot) (b banana) (c cherry) (d) (e))
(1) (2) (3) (4 2) (B) (63 2)))
— ((1) (2) (3) (4 2) (5) (6 3 2) (A APPLE APRICOT) (B BANANA) (C CHERRY))

See Also:

declare, defmacro, defun, documentation, let, Section 3.1 (Evaluation), Section 3.4.11 (Syntac-
tic Interaction of Documentation Strings and Declarations)

Notes:

It is not possible to define recursive functions with flet. labels can be used to define mutually
recursive functions.

If a macrolet form is a top level form, the body forms are also processed as top level forms. See
Section 3.2.3 (File Compilation).

Data and Control Flow 5—23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

funcall Function

Syntax:

funcall function &rest args — {result}*

Arguments and Values:
function—a function designator.

args—arguments to the function.

results—the values returned by the function.

Description:

funcall applies function to args. If function is a symbol, it is coerced to a function as if by finding
its functional value in the global environment.

Examples:

(funcall #°+ 1 2 3) — 6

(funcall ’car ’(1 2 3)) — 1

(funcall ’position 1 ’(1 2 3 2 1) :start 1) — 4

(cons 1 2) — (1. 2)

(flet ((comns (x y) ‘(kons ,x ,y)))

(let ((cons (symbol-function ’+)))
(funcall #’cons
(funcall ’cons 1 2)
(funcall cons 1 2))))
— (KONS (1 . 2) 3)

Exceptional Situations:

An error of type undefined-function should be signaled if function is a symbol that does not have
a global definition as a function or that has a global definition as a macro or a special operator.

See Also:
apply, function, Section 3.1 (Evaluation)

Notes:

(funcall function argl arg2 ...)
= (apply function argl arg2 ... nil)
= (apply function (list argl arg2 ...))

The difference between funcall and an ordinary function call is that in the former case the

5-24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

function is obtained by ordinary evaluation of a form, and in the latter case it is obtained by the
special interpretation of the function position that normally occurs.

function Special Operator

Syntax:

function name — function

Arguments and Values:
name—a function name or lambda expression.

function—a function object.

Description:
The value of function is the functional value of name in the current lexical environment.

If name is a function name, the functional definition of that name is that established by the
innermost lexically enclosing flet, labels, or macrolet form, if there is one. Otherwise the global
functional definition of the function name is returned.

If name is a lambda expression, then a lexical closure is returned. In situations where a closure
over the same set of bindings might be produced more than once, the various resulting closures
might or might not be eq.

It is an error to use function on a function name that does not denote a function in the lexical
environment in which the function form appears. Specifically, it is an error to use function on a
symbol that denotes a macro or special form. An implementation may choose not to signal this
error for performance reasons, but implementations are forbidden from defining the failure to
signal an error as a useful behavior.

Examples:
(defun adder (x) (function (lambda (y) (+ x y))))

The result of (adder 3) is a function that adds 3 to its argument:

(setq add3 (adder 3))
(funcall add3 5) — 8

This works because function creates a closure of the lambda expression that is able to refer to the
value 3 of the variable x even after control has returned from the function adder.

See Also:

defun, fdefinition, flet, labels, symbol-function, Section 3.1.2.1.1 (Symbols as Forms), Section
2.4.8.2 (Sharpsign Single-Quote), Section 22.1.3.13 (Printing Other Objects)

Data and Control Flow 5—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

The notation #’name may be used as an abbreviation for (function name).

function-lambda-expression Function

Syntax:

function-lambda-expression function
— lambda-expression, closure-p, name

Arguments and Values:
function—a function.

lambda-expression—a lambda expression or nil.
closure-p—a generalized boolean.
name—an object.

Description:
Returns information about function as follows:

The primary value, lambda-expression, is function’s defining lambda expression, or nil if the
information is not available. The lambda expression may have been pre-processed in some ways,
but it should remain a suitable argument to compile or function. Any implementation may
legitimately return nil as the lambda-expression of any function.

The secondary value, closure-p, is nil if function’s definition was enclosed in the null lexical
environment or something non-nil if function’s definition might have been enclosed in some non-
null lexical environment. Any implementation may legitimately return true as the closure-p of any
function.

The tertiary value, name, is the “name” of function. The name is intended for debugging only
and is not necessarily one that would be valid for use as a name in defun or function, for ex-
ample. By convention, nil is used to mean that function has no name. Any implementation may
legitimately return nil as the name of any function.

Examples:

The following examples illustrate some possible return values, but are not intended to be exhaus-
tive:

5-26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

(function-lambda-expression #’(lambda (x) x))
— NIL, false, NIL

(e}

2% NIL, true, NIL
2% (LAMBDA (X) X), true, NIL
% (LAMBDA (X) X), false, NIL

(function-lambda-expression
(funcall #’(lambda () #’(lambda (x) x))))
— NIL, false, NIL
% NIL, true, NIL
% (LAMBDA (X) X), true, NIL
% (LAMBDA (X) X), false, NIL

(function-lambda-expression

(funcall #’(lambda (x) #’(lambda () x)) nil))
— NIL, true, NIL
%% (LAMBDA () X), true, NIL

not

— NIL, false, NIL

not

— " (LAMBDA () X), false, NIL

(flet ((foo (x) x))
(setf (symbol-function ’bar) #’foo)
(function-lambda-expression #’bar))
— NIL, false, NIL
%% NIL, true, NIL
% (LAMBDA (X) (BLOCK FOO X)), true, NIL
2. (LAMBDA (X) (BLOCK FOO X)), false, FOO
2. (SI::BLOCK-LAMBDA FOO (X) X), false, FOO

(defun foo ()

(flet ((bar (x) x))

#’bar))

(function-lambda-expression (foo))
— NIL, false, NIL
2% NIL, true, NIL
2% (LAMBDA (X) (BLOCK BAR X)), true, NIL
2% (LAMBDA (X) (BLOCK BAR X)), true, (:INTERNAL FOO O BAR)
2% (LAMBDA (X) (BLOCK BAR X)), false, "BAR in FOO"

4

Although implementations are free to return “nil, true, nil” in all cases, they are encouraged to
return a lambda expression as the primary value in the case where the argument was created by a
call to compile or eval (as opposed to being created by loading a compiled file).

Data and Control Flow 5—27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

functionp Function

Syntax:

functionp object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a generalized boolean.

Description:
Returns true if object is of type function; otherwise, returns false.

Examples:

(functionp ’append) — false

(functionp #’append) — true

(functionp (symbol-function ’append)) — true
(flet ((£ () 1)) (functionp #°f)) — true
(functionp (compile nil ’(lambda () 259))) — true
(functionp nil) — false

(functionp 12) — false

(functionp ’(lambda (x) (* x x))) — false
(functionp #’(lambda (x) (* x x))) — true

Notes:

(functionp object) = (typep object ’function)

compiled-function-p Function

Syntax:

compiled-function-p object — generalized-boolean

Arguments and Values:
object—an object.

generalized-boolean—a, generalized boolean.

Description:
Returns true if object is of type compiled-function; otherwise, returns false.

5-28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(defun f (x) x) — F

(compiled-function-p #°f)

— false

or

— true

(compiled-function-p ’f) — false

(compile ’f) — F

(compiled-function-p #’f) — {rue
(compiled-function-p ’f) — false
(compiled-function-p (compile nil ’(lambda (x) x)))
— true

(compiled-function-p #’(lambda (x) x))

— false

or

— true

(compiled-function-p ’(lambda (x) x)) — false

See Also:

compile, compile-file, compiled-function
Notes:

(compiled-function-p object) = (typep object ’compiled-function)

call-arguments-limit Constant Variable

Constant Value:

An integer not smaller than 50 and at least as great as the value of lambda-parameters-limit,
the exact magnitude of which is implementation-dependent.

Description:
The upper exclusive bound on the number of arguments that may be passed to a function.

See Also:

lambda-parameters-limit, multiple-values-limit

Data and Control Flow 5—29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

lamb da—list-keywords Constant Variable

Constant Value:

a list, the elements of which are implementation-dependent, but which must contain at least
the symbols &allow-other-keys, &aux, &body, &environment, &key, &optional, &rest, and
&whole.

Description:

A list of all the lambda list keywords used in the implementation, including the additional ones
used only by macro definition forms.

See Also:

defun, flet, defmacro, macrolet, Section 3.1.2 (The Evaluation Model)

lambda-parameters-limit Constant Variable

Constant Value:
implementation-dependent, but not smaller than 50.

Description:

A positive integer that is the upper exclusive bound on the number of parameter names that can
appear in a single lambda list.

See Also:

call-arguments-limit

Notes:

Implementors are encouraged to make the value of lambda-parameters-limit as large as possible.

5-30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defconstant

defconstant Macro

Syntax:

defconstant name initial-value [documentation] — name

Arguments and Values:
name—a symbol; not evaluated.

initial-value—a form; evaluated.
documentation—a string; not evaluated.

Description:

defconstant causes the global variable named by name to be given a value that is the result of
evaluating initial-value.

A constant defined by defconstant can be redefined with defconstant. However, the consequences
are undefined if an attempt is made to assign a value to the symbol using another operator, or to
assign it to a different value using a subsequent defconstant.

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defconstant normally appears as a top level form, but it is meaningful for it to appear as a
non-top-level form. However, the compile-time side effects described below only take place when
defconstant appears as a top level form.

The consequences are undefined if there are any bindings of the variable named by name at the
time defconstant is executed or if the value is not eql to the value of initial-value.

The consequences are undefined when constant symbols are rebound as either lexical or dynamic
variables. In other words, a reference to a symbol declared with defconstant always refers to its
global value.

The side effects of the execution of defconstant must be equivalent to at least the side effects of
the execution of the following code:

(setf (symbol-value ’name) initial-value)
(setf (documentation ’name ’variable) ’documentation)

If a defconstant form appears as a top level form, the compiler must recognize that name names
a constant variable. An implementation may choose to evaluate the value-form at compile time,
load time, or both. Therefore, users must ensure that the initial-value can be evaluated at compile
time (regardless of whether or not references to name appear in the file) and that it always
evaluates to the same value.

Data and Control Flow 5-31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(defconstant this-is-a-constant ’never-changing "for a test") — THIS-IS-A-CONSTANT
this-is-a-constant — NEVER-CHANGING

(documentation ’this-is-a-constant ’variable) — "for a test"

(constantp ’this-is-a-constant) — {true

See Also:

declaim, defparameter, defvar, documentation, proclaim, Section 3.1.2.1.1.3 (Constant Vari-
ables), Section 3.2 (Compilation)

defparameter, defvar Macro

Syntax:

defparameter name initial-value [documentation] ~— name
defvar name [initial-value [documentation]] ~— name

Arguments and Values:
name—a symbol; not evaluated.

initial-value—a form; for defparameter, it is always evaluated, but for defvar it is evaluated only
if name is not already bound.

documentation—a string; not evaluated.

Description:
defparameter and defvar establish name as a dynamic variable.

defparameter unconditionally assigns the initial-value to the dynamic variable named name.
defvar, by contrast, assigns initial-value (if supplied) to the dynamic variable named name only if
name is not already bound.

If no initial-value is supplied, defvar leaves the value cell of the dynamic variable named name
undisturbed; if name was previously bound, its old value persists, and if it was previously un-
bound, it remains unbound.

If documentation is supplied, it is attached to name as a documentation string of kind variable.

defparameter and defvar normally appear as a top level form, but it is meaningful for them to
appear as non-top-level forms. However, the compile-time side effects described below only take
place when they appear as top level forms.

5-32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defparameter, defvar

Examples:

(defparameter *p* 1) — *Px
*px — 1

(constantp ’#p*) — false
(setq *px 2) — 2
(defparameter *p* 3) — *Px
p — 3

(defvar *v*x 1) — *Vx
*xykx — 1

(constantp ’#*v*) — false
(setq *vx 2) — 2
(defvar *vx 3) — *VUx
*xyk — 2

(defun foo ()
(et ((xp* ’p) (xvx ’v))
(bar))) — FOO
(defun bar () (list #*p* *v*)) — BAR
(foo) — (P V)

The principal operational distinction between defparameter and defvar is that defparameter
makes an unconditional assignment to name, while defvar makes a conditional one. In practice,
this means that defparameter is useful in situations where loading or reloading the definition
would want to pick up a new value of the variable, while defvar is used in situations where the
old value would want to be retained if the file were loaded or reloaded. For example, one might
create a file which contained:

(defvar *the-interesting-numbersx* ’())
(defmacro define-interesting-number (name n)
‘(progn (defvar ,name ,n)
(pushnew ,name *the-interesting-numbersx*)
> 'name))
(define-interesting-number *my-height* 168) ;cm
(define-interesting-number *my-weight* 13) ;stones

Here the initial value, (), for the variable *the-interesting-numbers* is just a seed that we are
never likely to want to reset to something else once something has been grown from it. As such,
we have used defvar to avoid having the *interesting-numbers* information reset if the file is
loaded a second time. It is true that the two calls to define-interesting-number here would

be reprocessed, but if there were additional calls in another file, they would not be and that
information would be lost. On the other hand, consider the following code:

(defparameter *default-beep-count* 3)
(defun beep (&optional (n *default-beep-countx*))
(dotimes (i n) (si:%beep 1000. 100000.) (sleep 0.1)))

Data and Control Flow 5—33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defparameter, defvar

Here we could easily imagine editing the code to change the initial value of *default-beep-countx,
and then reloading the file to pick up the new value. In order to make value updating easy, we
have used defparameter.

On the other hand, there is potential value to using defvar in this situation. For example, sup-
pose that someone had predefined an alternate value for *default-beep-count*, or had loaded
the file and then manually changed the value. In both cases, if we had used defvar instead of
defparameter, those user preferences would not be overridden by (re)loading the file.

The choice of whether to use defparameter or defvar has visible consequences to programs, but
is nevertheless often made for subjective reasons.

Side Effects:

If a defvar or defparameter form appears as a top level form, the compiler must recognize that
the name has been proclaimed special. However, it must neither evaluate the initial-value form
nor assign the dynamic variable named name at compile time.

There may be additional (implementation-defined) compile-time or run-time side effects, as long
as such effects do not interfere with the correct operation of conforming programs.

Affected By:

defvar is affected by whether name is already bound.

See Also:

Notes:

declaim, defconstant, documentation, Section 3.2 (Compilation)

It is customary to name dynamic variables with an asterisk at the beginning and end of the
name. e.g., *foo* is a good name for a dynamic variable, but not for a lexical variable; foo is
a good name for a lexical variable, but not for a dynamic variable. This naming convention
is observed for all defined names in Common Lisp; however, neither conforming programs nor
conforming implementations are obliged to adhere to this convention.

The intent of the permission for additional side effects is to allow implementations to do normal
“bookkeeping” that accompanies definitions. For example, the macro expansion of a defvar or
defparameter form might include code that arranges to record the name of the source file in
which the definition occurs.

defparameter and defvar might be defined as follows:

(defmacro defparameter (name initial-value
&optional (documentation nil documentation-p))
‘(progn (declaim (special ,name))
(setf (symbol-value ’,name) ,initial-value)
, (when documentation-p
‘(setf (documentation ’,name ’variable) ’,documentation))
’ ,name))

5-34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defmacro defvar (name &optional
(initial-value nil initial-value-p)
(documentation nil documentation-p))
‘(progn (declaim (special ,name))
, (when initial-value-p
‘(unless (boundp ’,name)
(setf (symbol-value ’,name) ,initial-value)))
, (when documentation-p
‘(setf (documentation ’,name ’variable) ’,documentation))
’ ,name))

destructuring-bind Macro

Syntax:

destructuring-bind /ambda-list expression {declaration}* {form}*
— {result}*

Arguments and Values:
lambda-list—a destructuring lambda list.

expression—a. form.

declaration—a declare ezpression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description:

destructuring-bind binds the variables specified in lambda-list to the corresponding values in
the tree structure resulting from the evaluation of expression; then destructuring-bind evaluates
forms.

The lambda-list supports destructuring as described in Section 3.4.5 (Destructuring Lambda
Lists).

Examples:

(defun iota (n) (loop for i from 1 to n collect i)) ;helper
(destructuring-bind ((a &optional (b ’bee)) one two three)
‘((alpha) ,@(iota 3))
(list a b three two one)) — (ALPHA BEE 3 2 1)

Data and Control Flow 5—35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Exceptional Situations:

If the result of evaluating the expression does not match the destructuring pattern, an error of
type error should be signaled.

See Also:

macrolet, defmacro

let, letx Special Operator

Syntax:
let ({var | (var [init-form])}*) {declaration}* {form}* — {result}*

let* ({var | (var [init-form])}*) {declaration}* {form}* — {result}*

Arguments and Values:
var—a symbol.

init-form—a form.

declaration—a declare expression; not evaluated.
form—a form.

results—the values returned by the forms.

Description:

let and let* create new variable bindings and execute a series of forms that use these bindings.
let performs the bindings in parallel and let* does them sequentially.

The form

(let ((varl init-form-1)
(var2 init-form-2)

(varm init-form-m))
declarationl
declaration2
declarationp
forml
form2

formn)

5-36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

let, letx

first evaluates the expressions init-form-1, init-form-2; and so on, in that order, saving the result-
ing values. Then all of the variables varj are bound to the corresponding values; each binding is
lexical unless there is a special declaration to the contrary. The expressions formk are then evalu-
ated in order; the values of all but the last are discarded (that is, the body of a let is an implicit
progn).

let* is similar to let, but the bindings of variables are performed sequentially rather than in
parallel. The expression for the init-form of a var can refer to vars previously bound in the let*.

The form

(letx ((varl init-form-1)
(var2 init-form-2)

(varm init-form-m))
declarationl
declaration2

declarationp
form1
form2

formn)
first evaluates the expression init-form-1, then binds the variable varl to that value; then it

evaluates init-form-2 and binds var2, and so on. The expressions formj are then evaluated in
order; the values of all but the last are discarded (that is, the body of let* is an implicit progn).

For both let and let*, if there is not an init-form associated with a var, var is initialized to nil.

The special form let has the property that the scope of the name binding does not include any
initial value form. For let*, a variable’s scope also includes the remaining initial value forms for
subsequent variable bindings.

Examples:

(setq a ’top) — TOP
(defun dummy-function () a) — DUMMY-FUNCTION
(let ((a ’inside) (b a))

(format nil ""S “S ~“S" a b (dummy-function))) — "INSIDE TOP TOP"
(let* ((a ’inside) (b a))

(format nil "~S “S ~“S" a b (dummy-function))) — "INSIDE INSIDE TOP"
(let ((a ’inside) (b a))

(declare (special a))

(format nil "~S “S ~“S" a b (dummy-function))) — "INSIDE TOP INSIDE"

The code

Data and Control Flow 5—37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(let (x)
(declare (integer x))
(setq x (gcd y z))
)

is incorrect; although x is indeed set before it is used, and is set to a value of the declared type
integer, nevertheless x initially takes on the value nil in violation of the type declaration.

See Also:
progv

progv

Special Operator

Syntax:

progv symbols values {form}* — {result}*

Arguments and Values:
symbols—a list of symbols; evaluated.

values—a list of objects; evaluated.
forms—an implicit progn.
results—the values returned by the forms.

Description:

progv creates new dynamic variable bindings and executes each form using those bindings. Each

form is evaluated in order.

progv allows binding one or more dynamic variables whose names may be determined at run
time. Each form is evaluated in order with the dynamic variables whose names are in symbols
bound to corresponding values. If too few values are supplied, the remaining symbols are bound
and then made to have no value. If too many values are supplied, the excess values are ignored.

The bindings of the dynamic variables are undone on exit from progv.

Examples:
(setq *xx 1) — 1
(progv ’ (¥x*) ’(2) *x*x) — 2
x — 1

Assuming *x* is not globally special,

(let ((xx* 3))
(progv ’ (xxx*) ’(4)

5-38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(list *x* (symbol-value ’*x%*)))) — (3 4)

See Also:

let, Section 3.1 (Evaluation)

Notes:
Among other things, progv is useful when writing interpreters for languages embedded in Lisp; it
provides a handle on the mechanism for binding dynamic variables.

setq Special Form

Syntax:
setq {|pair}* — result

pair::=var form
Pronunciation:
['set, kyii]

Arguments and Values:
var—a symbol naming a variable other than a constant variable.

form—a form.

result—the primary value of the last form, or nil if no pairs were supplied.

Description:
Assigns values to variables.

(setq varl forml wvar2 form?2 ...) is the simple variable assignment statement of Lisp. First
form1 is evaluated and the result is stored in the variable varl, then form2 is evaluated and the
result stored in var2, and so forth. setq may be used for assignment of both lexical and dynamic
variables.

If any var refers to a binding made by symbol-macrolet, then that var is treated as if setf (not
setq) had been used.

Examples:

;3 A simple use of SETQ to establish values for variables.
(setgqalb2c3 — 3

a — 1

b — 2

c — 3

Data and Control Flow 5—39

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Use of SETQ to update values by sequential assignment.
(setg a (1+ b) b (1+ a) c (+ ab)) — 7

a — 3

b — 4

c— 7

;5 This illustrates the use of SETQ on a symbol macro.
(let ((x (list 10 20 30)))
(symbol-macrolet ((y (car x)) (z (cadr x)))
(setq y (1+ 2) z (1+ y))
(list x y 2)))
— ((21 22 30) 21 22)

Side Effects:

The primary value of each form is assigned to the corresponding var.

See Also:
psetq, set, setf

psetq Macro

Syntax:
psetq {|pair}* — nil
pair::=var form

Pronunciation:
psetq: [|pe ' set kyii]

Arguments and Values:
var—a symbol naming a variable other than a constant variable.

form—a form.

Description:
Assigns values to variables.

This is just like setq, except that the assignments happen “in parallel.” That is, first all of the
forms are evaluated, and only then are the variables set to the resulting values. In this way, the
assignment to one variable does not affect the value computation of another in the way that
would occur with setq’s sequential assignment.

5-40 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If any var refers to a binding made by symbol-macrolet, then that var is treated as if psetf (not
psetq) had been used.

Examples:

;3 A simple use of PSETQ to establish values for variables.
;; As a matter of style, many programmers would prefer SETQ
;; in a simple situation like this where parallel assignment
;; is not needed, but the two have equivalent effect.
(psetga 1 b2c 3) — NIL

a — 1

b — 2

c — 3

;; Use of PSETQ to update values by parallel assignment.

;; The effect here is very different than if SETQ had been used.
(psetq a (1+ b) b (1+ a) ¢ (+ a b)) — NIL

a — 3

b — 2

c — 3

;; Use of PSETQ on a symbol macro.
(let ((x (1ist 10 20 30)))
(symbol-macrolet ((y (car x)) (z (cadr x)))
(psetq y (1+ z) z (1+ y))
(list x y 2)))
— ((21 11 30) 21 11)

;; Use of parallel assignment to swap values of A and B.
(let ((a 1) (b 2))
(psetg a b b a)
(values a b))
— 2, 1

Side Effects:

The values of forms are assigned to vars.

See Also:
psetf, setq

Data and Control Flow 5—41

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

block

block Special Operator

Syntax:

block name form* — {result}*

Arguments and Values:
name—a symbol.

form—a form.

results—the values of the forms if a normal return occurs, or else, if an explicit return occurs, the
values that were transferred.

Description:
block establishes a block named name and then evaluates forms as an implicit progn.

The special operators block and return-from work together to provide a structured, lexical, non-
local exit facility. At any point lexically contained within forms, return-from can be used with
the given name to return control and values from the block form, except when an intervening
block with the same name has been established, in which case the outer block is shadowed by the
inner one.

The block named name has lexical scope and dynamic extent.
Once established, a block may only be exited once, whether by normal return or explicit return.
Examples:

(block empty) — NIL
(block whocares (values 1 2) (values 3 4)) — 3, 4
(let ((x 1))
(block stop (setq x 2) (return-from stop) (setq x 3))
x) — 2
(block early (return-from early (values 1 2)) (values 3 4)) — 1, 2
(block outer (block inner (return-from outer 1)) 2) — 1
(block twin (block twin (return-from twin 1)) 2) — 2
;; Contrast behavior of this example with corresponding example of CATCH.
(block b
(flet ((b1 () (return-from b 1)))
(block b (bl) (print ’unreachable))
2)) — 1

See Also:

return, return-from, Section 3.1 (Evaluation)

5-42 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Notes:

catch Special Operator

Syntax:
catch tag {form}* — {result}*

Arguments and Values:
tag—a catch tag; evaluated.

forms—an implicit progn.

results—if the forms exit normally, the values returned by the forms; if a throw occurs to the tag,
the values that are thrown.

Description:
catch is used as the destination of a non-local control transfer by throw. Tags are used
to find the catch to which a throw is transferring control. (catch ’foo form) catches a
(throw ’foo form) but not a (throw ’bar form).

The order of execution of catch follows:
1. Tag is evaluated. It serves as the name of the catch.

2. Forms are then evaluated as an implicit progn, and the results of the last form are
returned unless a throw occurs.

3. If a throw occurs during the execution of one of the forms, control is transferred to the
catch form whose tag is eq to the tag argument of the throw and which is the most
recently established catch with that tag. No further evaluation of forms occurs.

4. The tag established by catch is disestablished just before the results are returned.

If during the execution of one of the forms, a throw is executed whose tag is eq to the catch tag,
then the values specified by the throw are returned as the result of the dynamically most recently
established catch form with that tag.

The mechanism for catch and throw works even if throw is not within the lexical scope of catch.
throw must occur within the dynamic extent of the evaluation of the body of a catch with a
corresponding tag.

Examples:

(catch ’dummy-tag 1 2 (throw ’dummy-tag 3) 4) — 3

Data and Control Flow 5—43

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(catch ’dummy-tag 1 2 3 4) — 4
(defun throw-back (tag) (throw tag t)) — THROW-BACK
(catch ’dummy-tag (throw-back ’dummy-tag) 2) — T

;; Contrast behavior of this example with corresponding example of BLOCK.
(catch ’c
(flet ((c1 (O (throw ’c 1)))
(catch ’c (cl1l) (print ’unreachable))
2)) — 2

Exceptional Situations:
An error of type control-error is signaled if throw is done when there is no suitable catch tag.

See Also:

throw, Section 3.1 (Evaluation)

Notes:
It is customary for symbols to be used as tags, but any object is permitted. However, numbers
should not be used because the comparison is done using eq.
catch differs from block in that catch tags have dynamic scope while block names have lexical
scope.
g0 Special Operator
Syntax:
go tag

Arguments and Values:
tag—a go tag.

Description:

go transfers control to the point in the body of an enclosing tagbody form labeled by a tag eql to
tag. If there is no such tag in the body, the bodies of lexically containing tagbody forms (if any)
are examined as well. If several tags are eql to tag, control is transferred to whichever matching
tag is contained in the innermost tagbody form that contains the go. The consequences are
undefined if there is no matching tag lexically visible to the point of the go.

The transfer of control initiated by go is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(tagbody

5-44 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(setq val 2)

(go 1p)

(incf val 3)

lp (incf val 4)) — NIL
val — 6

The following is in error because there is a normal exit of the tagbody before the go is executed.

(let ((a nil))
(tagbody t (setq a #’(lambda () (go t))))
(funcall a))

The following is in error because the tagbody is passed over before the go form is executed.

(funcall (block nil
(tagbody a (return #’(lambda () (go a))))))

See Also:
tagbody

return-from Special Operator

Syntax:

return-from name [result] —|

Arguments and Values:
name—a block tag; not evaluated.

result—a form; evaluated. The default is nil.

Description:
Returns control and multiple valuess from a lexically enclosing block.

A block form named name must lexically enclose the occurrence of return-from; any values
yielded by the evaluation of result are immediately returned from the innermost such lexically
enclosing block.

The transfer of control initiated by return-from is performed as described in Section 5.2 (Trans-
fer of Control to an Exit Point).

Examples:

(block alpha (return-from alpha) 1) — NIL
(block alpha (return-from alpha 1) 2) — 1

Data and Control Flow 5—45

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

return-from

(block alpha (return-from alpha (values 1 2)) 3) — 1, 2
(let ((a 0))
(dotimes (i 10) (incf a) (when (oddp i) (return)))
a) — 2
(defun temp (x)
(if x (return-from temp ’dummy))
44) — TEMP
(temp nil) — 44
(temp t) — DUMMY
(block out
(flet ((exit (n) (return-from out n)))
(block out (exit 1)))
2) — 1
(block nil
(unwind-protect (return-from nil 1)
(return-from nil 2)))
— 2
(dolist (flag ’(nil t))
(block nil
(let ((x 5))
(declare (special x))
(unwind-protect (return-from nil)
(print x))))
(print ’here))
> 5
> HERE
> 5
> HERE
— NIL
(dolist (flag ’(nil t))
(block nil
(let ((x 5))
(declare (special x))
(unwind-protect
(if flag (return-from nil))
(print x))))
(print ’here))
> 5
> HERE
> 5
> HERE
— NIL

The following has undefined consequences because the block form exits normally before the
return-from form is attempted.

5-46 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(funcall (block nil #’(lambda () (return-from nil)))) is an error.

See Also:

block, return, Section 3.1 (Evaluation)

return Macro

Syntax:

return [result] —|

Arguments and Values:
result—a form; evaluated. The default is nil.

Description:
Returns, as if by return-from, from the block named nil.

Examples:

(block nil (return) 1) — NIL

(block nil (return 1) 2) — 1

(block nil (return (values 1 2)) 3) — 1, 2
(block nil (block alpha (return 1) 2)) — 1
(block alpha (block nil (return 1)) 2) — 2
(block nil (block nil (return 1) 2)) — 1

See Also:

block, return-from, Section 3.1 (Evaluation)
Notes:

(return) = (return-from nil)
(return form) = (return-from nil form)

The implicit blocks established by macros such as do are often named nil, so that return can be
used to exit from such forms.

Data and Control Flow 5—47

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

tagbody

tagbod Special Operator
y

Syntax:
tagbody {tag | statement}* — nil

Arguments and Values:
tag—a go tag; not evaluated.

statement—a, compound form; evaluated as described below.

Description:

Executes zero or more statements in a lexical environment that provides for control transfers to
labels indicated by the tags.

The statements in a tagbody are evaluated in order from left to right, and their values are
discarded. If at any time there are no remaining statements, tagbody returns nil. However, if
(go tag) is evaluated, control jumps to the part of the body labeled with the tag. (Tags are
compared with eql.)

A tag established by tagbody has lexical scope and has dynamic extent. Once tagbody has
been exited, it is no longer valid to go to a tag in its body. It is permissible for go to jump to
a tagbody that is not the innermost tagbody containing that go; the tags established by a
tagbody only shadow other tags of like name.

The determination of which elements of the body are tags and which are statements is made prior
to any macro expansion of that element. If a statement is a macro form and its macro expansion
is an atom, that atom is treated as a statement, not a tag.

Examples:

(let (val)
(tagbody
(setq val 1)
(go point-a)
(incf val 16)
point-c
(incf val 04)
(go point-b)
(incf val 32)
point-a
(incf val 02)
(go point-c)
(incf val 64)
point-b
(incf val 08))

5-48 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

val)
— 15
(defun f1 (flag)
(let ((n 1))
(tagbody
(setq n (£f2 flag #’(lambda () (go out))))
out
(prinl n))))
— F1
(defun f2 (flag escape)
(if flag (funcall escape) 2))

— F2
(f1 nil)
> 2
— NIL
(f1 ©)
> 1
— NIL
See Also:
go
Notes:
The macros in Figure 5-10 have implicit tagbodies.
do do-external-symbols dotimes
do* do-symbols prog
do-all-symbols dolist prog*
Figure 5-10. Macros that have implicit tagbodies.
throw Special Operator
Syntax:

throw tag result-form —)|

Arguments and Values:
tag—a catch tag; evaluated.

result-form—a form; evaluated as described below.

Data and Control Flow 5—49

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

throw

Description:
throw causes a non-local control transfer to a catch whose tag is eq to tag.

Tag is evaluated first to produce an object called the throw tag; then result-form is evaluated, and
its results are saved. If the result-form produces multiple values, then all the values are saved. The
most recent outstanding catch whose tag is eq to the throw tag is exited; the saved results are
returned as the value or values of catch.

The transfer of control initiated by throw is performed as described in Section 5.2 (Transfer of
Control to an Exit Point).

Examples:

(catch ’result
(setq i 0 j 0)
(loop (incf j 3) (incf i)
(if (= i 3) (throw ’result (values i j))))) — 3, 9

(catch nil
(unwind-protect (throw nil 1)
(throw nil 2))) — 2

The consequences of the following are undefined because the catch of b is passed over by the first
throw, hence portable programs must assume that its dynamic extent is terminated. The binding
of the catch tag is not yet disestablished and therefore it is the target of the second throw.

(catch ’a
(catch ’b
(unwind-protect (throw ’a 1)
(throw ’b 2))))

The following prints “The inner catch returns :SECOND-THROW’ and then returns :outer-catch.

(catch ’foo
(format t "The inner catch returns ~s.~%"
(catch ’foo
(unwind-protect (throw ’foo :first-throw)
(throw ’foo :second-throw))))
:outer-catch)
> The inner catch returns :SECOND-THROW
— :0UTER-CATCH

Exceptional Situations:
If there is no outstanding catch tag that matches the throw tag, no unwinding of the stack

5-50 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

is performed, and an error of type control-error is signaled. When the error is signaled, the
dynamic environment is that which was in force at the point of the throw.

See Also:

block, catch, return-from, unwind-protect, Section 3.1 (Evaluation)

Notes:
catch and throw are normally used when the ezxit point must have dynamic scope (e.g., the
throw is not lexically enclosed by the catch), while block and return are used when lexical scope
is sufficient.
unwmd-protect Special Operator
Syntax:

unwind-protect protected-form {cleanup-form}* — {result}*

Arguments and Values:
protected-form—a, form.

cleanup-form—a form.
results—the values of the protected-form.

Description:
unwind-protect evaluates protected-form and guarantees that cleanup-forms are executed before
unwind-protect exits, whether it terminates normally or is aborted by a control transfer of some
kind. unwind-protect is intended to be used to make sure that certain side effects take place
after the evaluation of protected-form.

If a non-local exit occurs during execution of cleanup-forms, no special action is taken. The
cleanup-forms of unwind-protect are not protected by that unwind-protect.

unwind-protect protects against all attempts to exit from protected-form, including go,
handler-case, ignore-errors, restart-case, return-from, throw, and with-simple-restart.

Undoing of handler and restart bindings during an exit happens in parallel with the undoing

of the bindings of dynamic variables and catch tags, in the reverse order in which they were
established. The effect of this is that cleanup-form sees the same handler and restart bindings, as
well as dynamic variable bindings and catch tags, as were visible when the unwind-protect was
entered.

Examples:

(tagbody

Data and Control Flow 5-51

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

unwind-protect

(let ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))
out

.
When go is executed, the call to print is executed first, and then the transfer of control to the tag

out is completed.

(defun dummy-function (x)

(setq state ’running)
(unless (numberp x) (throw ’abort ’not-a-number))

(setq state (1+ x))) — DUMMY-FUNCTION
(catch ’abort (dummy-function 1)) — 2

state — 2
(catch ’abort (dummy-function ’trash)) — NOT-A-NUMBER

state — RUNNING
(catch ’abort (unwind-protect (dummy-function ’trash)
(setq state ’aborted))) — NOT-A-NUMBER

state — ABORTED
The following code is not correct:

(unwind-protect
(progn (incf *access-count*)
(perform-access))
(decf *access-countx*))

If an exit occurs before completion of incf, the decf form is executed anyway, resulting in an
incorrect value for *access-count*. The correct way to code this is as follows:

(let ((old-count *access-countx))
(unwind-protect
(progn (incf *access-count*)
(perform-access))
(setq *access-count* old-count)))

;55 The following returns 2.

(block nil
(unwind-protect (return 1)

(return 2)))

;55 The following has undefined consequences.

(block a
(block b

5-52 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

unwind-protect

(unwind-protect (return-from a 1)
(return-from b 2))))

;53 The following returns 2.
(catch nil
(unwind-protect (throw nil 1)
(throw nil 2)))

;55 The following has undefined consequences because the catch of B is

;55 passed over by the first THROW, hence portable programs must assume
;35 its dynamic extent is terminated. The binding of the catch tag is not
;35 yet disestablished and therefore it is the target of the second throw.
(catch ’a

(catch Db
(unwind-protect (throw ’a 1)
(throw ’b 2))))

;35 The following prints "The inner catch returns :SECOND-THROW"
;33 and then returns :0UTER-CATCH.
(catch ’foo

(format t "The inner catch returns “s.~%"

(catch ’foo
(unwind-protect (throw ’foo :first-throw)
(throw ’foo :second-throw))))
:outer-catch)

;53 The following returns 10. The inner CATCH of A is passed over, but
;3 ; because that CATCH is disestablished before the THROW to A is executed,
;55 it isn’t seen.
(catch ’a
(catch b
(unwind-protect (1+ (catch ’a (throw ’b 1)))
(throw ’a 10))))

;33 The following has undefined consequences because the extent of
;33 the (CATCH ’BAR ...) exit ends when the (THROW ’FOO0 ...)
;;; commences.
(catch ’foo
(catch ’bar
(unwind-protect (throw ’foo 3)
(throw ’bar 4)
(print ’xxx))))

Data and Control Flow

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;33 The following returns 4; XXX is not printed.
;535 The (THROW °FO0 ...) has no effect on the scope of the BAR
;55 catch tag or the extent of the (CATCH ’BAR ...) exit.
(catch ’bar
(catch ’foo
(unwind-protect (throw ’foo 3)
(throw ’bar 4)
(print ’xxx))))

;55 The following prints 5.
(block nil
(let ((x 5))
(declare (special x))
(unwind-protect (return)
(print x))))

See Also:

catch, go, handler-case, restart-case, return, return-from, throw, Section 3.1 (Evaluation)

nil Constant Variable

Constant Value:
nil.

Description:
nil represents both boolean (and generalized boolean) false and the empty list.

Examples:
nil — NIL

See Also:
t

5-54 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

not Function

Syntax:

not x — boolean

Arguments and Values:
x—a generalized boolean (i.e., any object).

boolean—a boolean.

Description:
Returns t if x is false; otherwise, returns nil.

Examples:

(not nil) — T

(mot ’0) — T

(not (integerp ’sss)) — T
(not (integerp 1)) — NIL
(not 3.7) — NIL

(not ’apple) — NIL

See Also:

null

Notes:

not is intended to be used to invert the ‘truth value’ of a boolean (or generalized boolean) whereas
null is intended to be used to test for the empty list. Operationally, not and null compute the
same result; which to use is a matter of style.

t Constant Variable

Constant Value:
t.

Description:

The boolean representing true, and the canonical generalized boolean representing true. Although
any object other than nil is considered true, t is generally used when there is no special reason to
prefer one such object over another.

Data and Control Flow 5-55

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The symbol t is also sometimes used for other purposes as well. For example, as the name of a
class, as a designator (e.g., a stream designator) or as a special symbol for some syntactic reason
(e.g., in case and typecase to label the otherwise-clause).

Examples:

t — T

(eq t ’t) — ftrue

(find-class ’t) — #<CLASS T 610703333>
(case ’a (a 1) (t 2)) — 1

(case b (a 1) (t 2)) — 2

(prinl ’hello t)
> HELLO
— HELLO

See Also:

nil

eq Function

Syntax:

eq xy — generalized-boolean

Arguments and Values:
x—an object.

y—an object.
generalized-boolean—a, generalized boolean.

Description:

Returns true if its arguments are the same, identical object; otherwise, returns false.

Examples:

(eq ’a ’b) — false
(eq ’a ’a) — true
(eq 3 3)

— true

2 false

(eq 3 3.0) — false
(eq 3.0 3.0)

— true

2 false

5-56 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eq

(eq #c(3 -4) #c(3 -4))

— true

2 false

(eq #c(3 -4.0) #c(3 -4)) — false

(eq (cons ’a ’b) (coms ’a ’c)) — false
(eq (cons ’a ’b) (coms ’a ’b)) — false
(eq ’(a . b) ’(a . b))

— true

2 false

(progn (setq x (cons ’a ’b)) (eq x x)) — true
(progn (setq x ’(a . b)) (eq x x)) — true
(eq #\A #\A)

— true

2 false

(let ((x "Foo")) (eq x x)) — true

(eq "Foo" "Foo")

— true

2 false

(eq "Foo" (copy-seq "Foo")) — false

(eq "FOO" "foo") — false

(eq "string-seq" (copy-seq "string-seq")) — false
(let ((x 5)) (eq x x))

— true

2 false

See Also:

Notes:

eql, equal, equalp, =, Section 3.2 (Compilation)

Objects that appear the same when printed are not necessarily eq to each other. Symbols that
print the same usually are eq to each other because of the use of the intern function. However,
numbers with the same value need not be eq, and two similar lists are usually not identical.

An implementation is permitted to make “copies” of characters and numbers at any time. The
effect is that Common Lisp makes no guarantee that eq is true even when both its arguments are
“the same thing” if that thing is a character or number.

Most Common Lisp operators use eql rather than eq to compare objects, or else they default to
eql and only use eq if specifically requested to do so. However, the following operators are defined
to use eq rather than eql in a way that cannot be overridden by the code which employs them:

catch getf throw
get remf
get-properties remprop

Figure 5—-11. Operators that always prefer EQ over EQL

Data and Control Flow 5-57

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

eql Function

Syntax:

eql x y — generalized-boolean

Arguments and Values:
x—an object.

y—an object.
generalized-boolean—a generalized boolean.

Description:
The value of eql is true of two objects, x and y, in the folowing cases:

1. If x and y are eq.
2. If x and y are both numbers of the same type and the same value.

3. If they are both characters that represent the same character.
Otherwise the value of eql is false.

If an implementation supports positive and negative zeros as distinct values, then (eql 0.0 -0.0)
returns false. Otherwise, when the syntax -0.0 is read it is interpreted as the value 0.0, and so
(eql 0.0 -0.0) returns true.

Examples:

(eql ’a ’b) — false

(eql ’a ’a) — ftrue

(eql 3 3) — true

(eql 3 3.0) — false

(eql 3.0 3.0) — true

(eql #c(3 -4) #c(3 -4)) — true

(eql #c(3 -4.0) #c(3 -4)) — false

(eql (coms ’a ’b) (coms ’a ’c)) — false
(eql (cons ’a ’b) (coms ’a ’b)) — false
(eql ’(a . b) ’(a . b))

— true

2 false

(progn (setq x (cons ’a ’b)) (eql x x)) — true
(progn (setq x ’(a . b)) (eql x x)) — true
(eql #\A #\A) — ftrue

5-58 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(eql "Foo" "Foo")

— true

2 false

(eql "Foo" (copy-seq "Foo")) — false
(eql "FOO" "foo") — false

Normally (eql 1.0s0 1.0d0) is false, under the assumption that 1.0s0 and 1.0d0 are of distinct
data types. However, implementations that do not provide four distinct floating-point formats
are permitted to “collapse” the four formats into some smaller number of them; in such an
implementation (eql 1.0s0 1.0d0) might be true.

See Also:

Notes:

eq, equal, equalp, =, char=

eql is the same as eq, except that if the arguments are characters or numbers of the same type
then their values are compared. Thus eql tells whether two objects are conceptually the same,

whereas eq tells whether two objects are implementationally identical. It is for this reason that
eql, not eq, is the default comparison predicate for operators that take sequences as arguments.

eql may not be true of two floats even when they represent the same value. = is used to compare
mathematical values.

Two complex numbers are considered to be eql if their real parts are eql and their imaginary
parts are eql. For example, (eql #C(4 5) #C(4 5)) is true and (eql #C(4 5) #C(4.0 5.0)) is
false. Note that while (eql #C(5.0 0.0) 5.0) is false, (eql #C(5 0) 5) is true. In the case of
(eql #C(5.0 0.0) 5.0) the two arguments are of different types, and so cannot satisfy eql. In the
case of (eql #C(5 0) 5), #C(5 0) is not a compler number, but is automatically reduced to the
integer 5.

equal Function

Syntax:

equal x y — generalized-boolean

Arguments and Values:

x—an object.
y—an object.

generalized-boolean—a, generalized boolean.

Data and Control Flow 5—59

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equal

Description:

Returns true if x and y are structurally similar (isomorphic) objects. Objects are treated as
follows by equal.

Symbols, Numbers, and Characters

equal is true of two objects if they are symbols that are eq, if they are numbers that are
eql, or if they are characters that are eql.

Conses

For conses, equal is defined recursively as the two cars being equal and the two cdrs
being equal.

Arrays

Two arrays are equal only if they are eq, with one exception: strings and bit vectors
are compared element-by-element (using eql). If either x or y has a fill pointer, the fill
pointer limits the number of elements examined by equal. Uppercase and lowercase
letters in strings are considered by equal to be different.

Pathnames

Two pathnames are equal if and only if all the corresponding components (host, device,
and so on) are equivalent. Whether or not uppercase and lowercase letters are considered
equivalent in strings appearing in components is implementation-dependent. pathnames
that are equal should be functionally equivalent.

Other (Structures, hash-tables, instances, ...)
Two other objects are equal only if they are eq.

equal does not descend any objects other than the ones explicitly specified above. Figure 5-12
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equal, with upper entries taking priority over lower ones.

5-60 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equal
Type Behavior
number uses eql
character uses eql
cons descends
bit vector descends
string descends
pathname “functionally equivalent”
structure uses eq
Other array uses eq
hash table uses eq
Other object uses eq

Figure 5-12. Summary and priorities of behavior of equal

Any two objects that are eql are also equal.
equal may fail to terminate if x or y is circular.

Examples:

(equal ’a ’b) — false

(equal ’a ’a) — true

(equal 3 3) — true

(equal 3 3.0) — false

(equal 3.0 3.0) — true

(equal #c(3 -4) #c(3 -4)) — f{rue

(equal #c(3 -4.0) #c(3 -4)) — false

(equal (cons ’a ’b) (cons ’a ’c)) — false
(equal (cons ’a ’b) (coms ’a ’b)) — true
(equal #\A #\A) — {rue

(equal #\A #\a) — false

(equal "Foo" "Foo") — true

(equal "Foo" (copy-seq "Foo")) — true
(equal "FOO" "foo") — false

(equal "This-string" "This-string") — {rue
(equal "This-string" "this-string") — false

See Also:

eq, eql, equalp, =, string=, string-equal, char=, char-equal, tree-equal

Notes:

Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound

Data and Control Flow 5—61

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

very generic, equal and equalp are not appropriate for every application.

A rough rule of thumb is that two objects are equal if and only if their printed representations are
the same.

equalp Function

Syntax:

equalp xy — generalized-boolean

Arguments and Values:
x—an object.

y—an object.
generalized-boolean—a generalized boolean.

Description:

Returns true if x and y are equal, or if they have components that are of the same type as each
other and if those components are equalp; specifically, equalp returns ¢rue in the following cases:

Characters

If two characters are char-equal.

Numbers

If two numbers are the same under =.

Conses

If the two cars in the conses are equalp and the two cdrs in the conses are equalp.

Arrays

If two arrays have the same number of dimensions, the dimensions match, and the
corresponding active elements are equalp. The types for which the arrays are specialized
need not match; for example, a string and a general array that happens to contain the
same characters are equalp. Because equalp performs element-by-element comparisons
of strings and ignores the case of characters, case distinctions are ignored when equalp
compares Strings.

5-62 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

equalp

Structures

If two structures S7 and Sy have the same class and the value of each slot in Sy is the
same under equalp as the value of the corresponding slot in Ss.

Hash Tables

equalp descends hash-tables by first comparing the count of entries and the :test func-
tion; if those are the same, it compares the keys of the tables using the :test function
and then the values of the matching keys using equalp recursively.

equalp does not descend any objects other than the ones explicitly specified above. Figure 5-13
summarizes the information given in the previous list. In addition, the figure specifies the priority
of the behavior of equalp, with upper entries taking priority over lower ones.

Type Behavior

number uses =

character uses char-equal

cons descends

bit vector descends

string descends

pathname same as equal

structure descends, as described above
Other array descends

hash table descends, as described above
Other object uses eq

Figure 5-13. Summary and priorities of behavior of equalp

Examples:

(equalp ’a ’b) — false

(equalp ’a ’a) — true

(equalp 3 3) — f{rue

(equalp 3 3.0) — true

(equalp 3.0 3.0) — true

(equalp #c(3 -4) #c(3 -4)) — true

(equalp #c(3 -4.0) #c(3 -4)) — ftrue
(equalp (cons ’a ’b) (cons ’a ’c)) — false
(equalp (cons ’a ’b) (cons ’a ’b)) — true
(equalp #\A #\A) — true

(equalp #\A #\a) — true

(equalp "Foo" "Foo") — {rue

(equalp "Foo" (copy-seq "Foo")) — true

Data and Control Flow 5—63

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(equalp "FOO" "foo") — true

(setq arrayl (make-array 6 :element-type ’integer
:initial-contents (1 1 1 3 5 7)))
— #(1 11357
(setq array2 (make-array 8 :element-type ’integer
:initial-contents (1 1 1 357 2 6)
:fill-pointer 6))
— #(111357)
(equalp arrayl array2) — {rue
(setq vectorl (vector 1 1 1357)) — #(111357)
(equalp arrayl vectorl) — true

See Also:

eq, eql, equal, =, string=, string-equal, char=, char-equal

Notes:
Object equality is not a concept for which there is a uniquely determined correct algorithm. The
appropriateness of an equality predicate can be judged only in the context of the needs of some
particular program. Although these functions take any type of argument and their names sound
very generic, equal and equalp are not appropriate for every application.

ident ity Function

Syntax:
identity object — object

Arguments and Values:
object—an object.

Description:
Returns its argument object.

Examples:

(identity 101) — 101
(mapcan #’identity (list (list 1 2 3) (4 56))) — (1 2345 86)

Notes:

identity is intended for use with functions that require a function as an argument.

(eql x (identity x)) returns t¢rue for all possible values of x, but (eq x (identity x)) might
return false when x is a number or character.

5-64 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

identity could be defined by

(defun identity (x) x)

complement Function

Syntax:

complement function — complement-function

Arguments and Values:
function—a function.

complement-function—a function.

Description:

Returns a function that takes the same arguments as function, and has the same side-effect
behavior as function, but returns only a single value: a generalized boolean with the opposite
truth value of that which would be returned as the primary value of function. That is, when the
function would have returned true as its primary value the complement-function returns false, and
when the function would have returned false as its primary value the complement-function returns
true.

Examples:

(funcall (complement #’zerop) 1) — {rue

(funcall (complement #’characterp) #\A) — false
(funcall (complement #’member) ’a ’(a b c)) — false
(funcall (complement #’member) ’d ’(a b c)) — true

See Also:

not
Notes:

(complement 7) = #’(lambda (&rest arguments) (not (apply Z arguments)))

In Common Lisp, functions with names like “zzz-if-not” are related to functions with names like
“rrr-if” in that

(zxx-if-not f . arguments) = (xxx-if (complement f) . arguments)
For example,

(find-if-not #’zerop ’(0 0 3)) =

Data and Control Flow 5—65

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(find-if (complement #’zerop) ’(0 0 3)) — 3

Note that since the “zzz-if-not” functions and the :test-not arguments have been deprecated,
uses of “xxx-if” functions or :test arguments with complement are preferred.

constantly Function

Syntax:

constantly value — function

Arguments and Values:
value—an object.

function—a function.

Description:

constantly returns a function that accepts any number of arguments, that has no side-effects, and
that always returns value.

Examples:

(mapcar (constantly 3) ’(a b c d)) — (3 3 3 3)
(defmacro with-vars (vars &body forms)

‘((lambda ,vars ,@forms) ,@(mapcar (constantly nil) vars)))
— WITH-VARS
(macroexpand ’(with-vars (a b) (setq a 3 b (* a a)) (list a b)))
— ((LAMBDA (A B) (SETQ A 3 B (* A A)) (LIST A B)) NIL NIL), true

See Also:
identity

Notes:
constantly could be defined by:

(defun constantly (object)
#’ (lambda (&rest arguments) object))

5-66 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

every, some, notevery, notany

every, some, notevery, notany Function

every predicate &rest sequences™ — generalized-boolean
some predicate &rest sequences™ — result
notevery predicate &rest sequencest — generalized-boolean

notany predicate &rest sequences”™ — generalized-boolean

Arguments and Values:

predicate—a designator for a function of as many arguments as there are sequences.

sequence—a, sequence.
result—an object.

generalized-boolean—a, generalized boolean.

Description:

every, some, notevery, and notany test elements of sequences for satisfaction of a given pred-
icate. The first argument to predicate is an element of the first sequence; each succeeding argu-
ment is an element of a succeeding sequence.

Predicate is first applied to the elements with index 0 in each of the sequences, and possibly then
to the elements with index 1, and so on, until a termination criterion is met or the end of the
shortest of the sequences is reached.

every returns false as soon as any invocation of predicate returns false. If the end of a sequence is
reached, every returns true. Thus, every returns true if and only if every invocation of predicate
returns true.

some returns the first non-nil value which is returned by an invocation of predicate. If the end of
a sequence is reached without any invocation of the predicate returning true, some returns false.
Thus, some returns true if and only if some invocation of predicate returns true.

notany returns false as soon as any invocation of predicate returns true. If the end of a sequence
is reached, notany returns true. Thus, notany returns true if and only if it is not the case that
any invocation of predicate returns true.

notevery returns true as soon as any invocation of predicate returns false. If the end of a se-
quence is reached, notevery returns false. Thus, notevery returns true if and only if it is not the
case that every invocation of predicate returns true.

Data and Control Flow 5—67

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(every #’characterp "abc") — true

(some #’= °(1 23 45) ’(54321)) — true

(notevery #’< (1 23 4) ’(5 67 8) ’(9 10 11 12)) — false
(notany #°> (1 2 3 4) (567 8) *(9 10 11 12)) — true

Exceptional Situations:
Should signal type-error if its first argument is neither a symbol nor a function or if any subse-
quent argument is not a proper sequence.

Other exceptional situations are possible, depending on the nature of the predicate.

See Also:
and, or, Section 3.6 (Traversal Rules and Side Effects)

Notes:

(notany predicate {sequence}*) = (not (some predicate {sequence}*))

(notevery predicate {sequence}*) = (not (every predicate {sequence}*))

and Macro
Syntax:

and {form}* — {result}*

Arguments and Values:
form—a form.

results—the values resulting from the evaluation of the last form, or the symbols nil or t.

Description:

The macro and evaluates each form one at a time from left to right. As soon as any form eval-
uates to nil, and returns nil without evaluating the remaining forms. If all forms but the last
evaluate to true values, and returns the results produced by evaluating the last form.

If no forms are supplied, (and) returns t.

and passes back multiple values from the last subform but not from subforms other than the last.
Examples:

(if (and (>= n 0)

5-68 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo))
(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the symbol foo, provided also
that n is indeed a valid index for a-simple-vector. Because and guarantees left-to-right testing of
its parts, elt is not called if n is out of range.

(setq templ 1 temp2 1 temp3 1) — 1

(and (incf templ) (incf temp2) (incf temp3)) — 2

(and (eql 2 templ) (eql 2 temp2) (eql 2 temp3)) — {rue

(decf temp3) — 1

(and (decf templ) (decf temp2) (eq temp3 ’nil) (decf temp3)) — NIL
(and (eql templ temp2) (eql temp2 temp3)) — {rue

(and) — T
See Also:
cond, every, if, or, when
Notes:
(and form) = (et () form)
(and forml form2 ...) = (when forml (and form2 ...))
cond Macro
Syntax:

cond {|clause}* — {result}*

clause::=(test-form {form}*)

Arguments and Values:
test-form—a form.

forms—an implicit progn.

results—the values of the forms in the first clause whose test-form yields true, or the primary
value of the test-form if there are no forms in that clause, or else nil if no test-form yields true.

Description:
cond allows the execution of forms to be dependent on test-form.

Data and Control Flow 5—69

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Test-forms are evaluated one at a time in the order in which they are given in the argument list
until a test-form is found that evaluates to true.

If there are no forms in that clause, the primary value of the test-form is returned by the cond
form. Otherwise, the forms associated with this test-form are evaluated in order, left to right, as
an implicit progn, and the values returned by the last form are returned by the cond form.

Once one test-form has yielded true, no additional test-forms are evaluated. If no test-form yields
true, nil is returned.

Examples:

(defun select-options ()
(cond ((= a 1) (setq a 2))

((= a 2) (setq a 3))
((and (= a 3) (floor a 2)))
(t (floor a 3)))) — SELECT-OPTIONS

(setqa 1) — 1

(select-options) — 2

a — 2

(select-options) — 3

a— 3

(select-options) — 1

(setq a 5) — b5

(select-options) — 1, 2

See Also:

if, case.

if Special Operator

Syntax:

if test-form then-form [else-form| — {result}*

Arguments and Values:
Test-form—a, form.

Then-form—a form.
Else-form—a form. The default is nil.

results—if the test-form yielded true, the values returned by the then-form; otherwise, the values
returned by the else-form.

5-70 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:
if allows the execution of a form to be dependent on a single test-form.

First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is
selected. Whichever form is selected is then evaluated.

Examples:

(ift1) — 1
(if nil 1 2) — 2
(defun test ()

(dolist (truth-value ’(t nil 1 (a b c)))
(if truth-value (print ’true) (print ’false))
(prinl truth-value))) — TEST

(test)
> TRUE T
> FALSE NIL
> TRUE 1
> TRUE (A B C)
— NIL

See Also:

cond, unless, when
Notes:

(if test-form then-form else-form)
= (cond (test-form then-form) (t else-form))

or Macro

Syntax:

or {form}* — {results}*

Arguments and Values:
form—a form.

results—the values or primary value (see below) resulting from the evaluation of the last form
executed or nil.

Description:

or evaluates each form, one at a time, from left to right. The evaluation of all forms terminates
when a form evaluates to true (i.e., something other than nil).

Data and Control Flow 5-71

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

If the evaluation of any form other than the last returns a primary value that is true, or imme-
diately returns that value (but no additional values) without evaluating the remaining forms. If
every form but the last returns false as its primary value, or returns all values returned by the

last form. If no forms are supplied, or returns nil.
Examples:

(or) — NIL

(setq tempO nil templ 10 temp2 20 temp3 30) — 30
(or tempO templ (setq temp2 37)) — 10

temp2 — 20

(or (incf templ) (incf temp2) (incf temp3)) — 11
templ — 11

temp2 — 20

temp3 — 30

(or (values) templ) — 11

(or (values templ temp2) temp3) — 11

(or tempO (values templ temp2)) — 11, 20

(or (values tempO templ) (values temp2 temp3)) — 20, 30

See Also:

and, some, unless

when, unless

Macro

Syntax:

when test-form {form}* — {result}*
unless test-form {form}* — {result}*

Arguments and Values:
test-form—a form.

forms—an implicit progn.

results—the values of the forms in a when form if the test-form yields true or in an unless form

if the test-form yields false; otherwise nil.

Description:

when and unless allow the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated in order from left to right
and the values returned by the forms are returned from the when form. Otherwise, if the test-

form yields false, the forms are not evaluated, and the when form returns nil.

5-72 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

when, unless

In an unless form, if the test-form yields false, the forms are evaluated in order from left to
right and the wvalues returned by the forms are returned from the unless form. Otherwise, if the
test-form yields false, the forms are not evaluated, and the unless form returns nil.

Examples:

(when t ’hello) — HELLO
(unless t ’hello) — NIL
(when nil ’hello) — NIL
(unless nil ’hello) — HELLO
(when t) — NIL
(unless nil) — NIL
(when t (prinl 1) (prinl 2) (prinl 3))
> 123
— 3
(unless t (prinl 1) (prinl 2) (prinl 3)) — NIL
(when nil (prinl 1) (prinl 2) (prinl 3)) — NIL
(unless nil (prinl 1) (prinl 2) (prinl 3))
> 123
— 3
(let ((x 3))
(1ist (when (oddp x) (incf x) (list x))
(when (oddp x) (incf x) (list x))
(unless (oddp x) (incf x) (list x))
(unless (oddp x) (incf x) (list x))
(if (oddp x) (incf x) (1list x))
(if (oddp x) (incf x) (list x))
(if (not (oddp x)) (incf x) (list x))
(if (not (oddp x)) (incf x) (list x))))
— ((4) NIL (5) NIL 6 (6) 7 (7))

See Also:

and, cond, if, or

Notes:

(vhen test {form}™)
(vhen test {form}™)
(vhen test {form}™)
(vhen test {form}™)
(unless test {form}+)
(unless test {form}™)
(unless test {form}™)

(and test (progn {form}™))
(cond (test {form}*))

(if test (progn {form}+) nil)
(unless (not test) {form}™)
(cond ((mot test) {form}™))
(if test nil (progn {form}+))
(when (not test) {form}™)

Data and Control Flow 5—73

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

case, CCase, ecase Macro

Syntax:

case keyform {|normal-clause}* [| otherwise-clause] — {result}*
ccase keyplace {|normal-clause}* — {result}*

ecase keyform {|normal-clause}* — {result}*
normal-clause::=(keys {form}*)
otherwise-clause::=({otherwise | t} {form}*)

clause::=normal-clause | otherwise-clause

Arguments and Values:
keyform—a form; evaluated to produce a test-key.

keyplace—a form; evaluated initially to produce a test-key. Possibly also used later as a place if
no keys match.

test-key—an object produced by evaluating keyform or keyplace.

keys—a designator for a list of objects. In the case of case, the symbols t and otherwise may not
be used as the keys designator. To refer to these symbols by themselves as keys, the designators
(t) and (otherwise), respectively, must be used instead.

forms—an implicit progn.
results—the values returned by the forms in the matching clause.

Description:

These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its identity.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is the same as any key for
that clause, the forms in that clause are evaluated as an implicit progn, and the values it returns
are returned as the value of the case, ccase, or ecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:
case

If no normal-clause matches, and there is an otherwise-clause, then that otherwise-clause

5-74 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

case, CCase, ecase

Examples:

automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the case.

If there is no otherwise-clause, case returns nil.

ccase

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member keyl key2 ...). The store-value restart can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key, and is stored
in keyplace as if by (setf keyplace test-key). Then ccase starts over, considering each
clause anew.

The subforms of keyplace might be evaluated again if none of the cases holds.

ecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(member keyl key2 ...).

Note that in contrast with ccase, the caller of ecase may rely on the fact that ecase does
not return if a normal-clause does not match.

(dolist (k (1 2 3 :four #\v () t ’other))

(format t "°S "

(case k ((1 2) ’clausel)
(3 ’clause2)
(nil ’no-keys-so-never-seen)
((nil) ’nilslot)
((:four #\v) ’clause4)
((t) ’tslot)
(otherwise ’others))))

> CLAUSE1 CLAUSE1 CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS

— NIL

(defun add-em (x) (apply #’+ (mapcar #’decode x)))
— ADD-EM
(defun decode (x)

(ccase x
((1 uno) 1)
((ii dos) 2)
((iii tres) 3)
((iv cuatro) 4)))

— DECODE

Data and Control Flow 5—75

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(add-em ’ (uno iii)) — 4
(add-em ’ (uno iiii))
> Error: The value of X, IIII, is not I, UNO, II, DOS, III,
> TRES, IV, or CUATRO.
> 1: Supply a value to use instead.
> 2: Return to Lisp Toplevel.
> Debug> :CONTINUE 1
> Value to evaluate and use for X: ’IV
— 5

Side Effects:
The debugger might be entered. If the store-value restart is invoked, the value of keyplace might
be changed.

Affected By:

ccase and ecase, since they might signal an error, are potentially affected by existing handlers and
debug-io.

Exceptional Situations:
ccase and ecase signal an error of type type-error if no normal-clause matches.

See Also:

cond, typecase, setf, Section 5.1 (Generalized Reference)
Notes:

(case test-key
{({key}™> {form}*)}*)

(let ((#1=#:g0001 test-key))
(cond {((member #1# > ({key}*)) {form}*)}*))

The specific error message used by ecase and ccase can vary between implementations. In
situations where control of the specific wording of the error message is important, it is better to
use case with an otherwise-clause that explicitly signals an error with an appropriate message.

typecase, ctypecase, etypecase Macro

Syntax:

typecase keyform {|normal-clause}* [|otherwise-clause] — {result}*
ctypecase keyplace {|normal-clause}* — {result}*

etypecase keyform {|normal-clause}* — {result}*

5-76 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typecase, ctypecase, etypecase

normal-clause::=(type {form}*)
otherwise-clause::=({otherwise | t} {form}*)
clause::=normal-clause | otherwise-clause

Arguments and Values:
keyform—a form; evaluated to produce a test-key.

keyplace—a form; evaluated initially to produce a test-key. Possibly also used later as a place if
no types match.

test-key—an object produced by evaluating keyform or keyplace.
type—a type specifier.

forms—an implicit progn.

results—the values returned by the forms in the matching clause.

Description:

These macros allow the conditional execution of a body of forms in a clause that is selected by
matching the test-key on the basis of its type.

The keyform or keyplace is evaluated to produce the test-key.

Each of the normal-clauses is then considered in turn. If the test-key is of the type given by
the clauses’s type, the forms in that clause are evaluated as an implicit progn, and the values it
returns are returned as the value of the typecase, ctypecase, or etypecase form.

These macros differ only in their behavior when no normal-clause matches; specifically:

typecase

If no normal-clause matches, and there is an otherwise-clause, then that otherwise-clause
automatically matches; the forms in that clause are evaluated as an implicit progn, and
the values it returns are returned as the value of the typecase.

If there is no otherwise-clause, typecase returns nil.

ctypecase

If no normal-clause matches, a correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or typel type2 ...). The store-value restart can be used to correct the error.

If the store-value restart is invoked, its argument becomes the new test-key, and is stored
in keyplace as if by (setf keyplace test-key). Then ctypecase starts over, considering
each clause anew.

Data and Control Flow 5-77

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

typecase, ctypecase, etypecase

If the store-value restart is invoked interactively, the user is prompted for a new test-key
to use.

The subforms of keyplace might be evaluated again if none of the cases holds.

etypecase

If no normal-clause matches, a non-correctable error of type type-error is signaled.
The offending datum is the test-key and the expected type is type equivalent to
(or typel type2 ...).

Note that in contrast with ctypecase, the caller of etypecase may rely on the fact that
etypecase does not return if a normal-clause does not match.

In all three cases, is permissible for more than one clause to specify a matching type, particularly
if one is a subtype of another; the earliest applicable clause is chosen.

Examples:

;55 (Note that the parts of this example which use TYPE-OF
;3; are implementation-dependent.)
(defun what-is-it (x)
(format t "7&"S is "A.7U"
x (typecase x
(float "a float")
(null "a symbol, boolean false, or the empty list")
(list "a list")
(t (format nil "a(n) “("A™)" (type-of x))))))
— WHAT-IS-IT
(map ’nil #’what-is-it ’(nil (a b) 7.0 7 box))
> NIL is a symbol, boolean false, or the empty list.
> (A B) is a list.
> 7.0 is a float.
> 7 is a(n) integer.
> BOX is a(n) symbol.
— NIL
(setq x 1/3)
— 1/3
(ctypecase x
(integer (x x 4))
(symbol (symbol-value x)))
Error: The value of X, 1/3, is neither an integer nor a symbol.
To continue, type :CONTINUE followed by an option number:
1: Specify a value to use instead.
2: Return to Lisp Toplevel.
Debug> :CONTINUE 1
Use value: 3.7

5-78 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

> Error: The value of X, 3.7, is neither an integer nor a symbol.
> To continue, type :CONTINUE followed by an option number:
> 1: Specify a value to use instead.
> 2: Return to Lisp Toplevel.
> Debug> :CONTINUE 1
> Use value: 12
— 48
x — 12

Affected By:
ctypecase and etypecase, since they might signal an error, are potentially affected by existing
handlers and *debug-io*.

Exceptional Situations:
ctypecase and etypecase signal an error of type type-error if no normal-clause matches.

The compiler may choose to issue a warning of type style-warning if a clause will never be
selected because it is completely shadowed by earlier clauses.

See Also:

case, cond, setf, Section 5.1 (Generalized Reference)

Notes:
(typecase test-key
{(type {form}*)}*)
(let ((#1=#:g0001 test-key))
(cond {((typep #1# ’type) {form}*)}*))
The specific error message used by etypecase and ctypecase can vary between implementations.
In situations where control of the specific wording of the error message is important, it is better
to use typecase with an otherwise-clause that explicitly signals an error with an appropriate
message.
multiple-value-bind Macro
Syntax:

multiple-value-bind ({var}*) values-form {declaration}* {form}*
— {result}*

Arguments and Values:
var—a symbol naming a variable; not evaluated.

Data and Control Flow 5—79

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

values-form—a form; evaluated.

declaration—a declare expression; not evaluated.
forms—an implicit progn.

results—the values returned by the forms.

Description:
Creates new variable bindings for the vars and executes a series of forms that use these bindings.

The variable bindings created are lexical unless special declarations are specified.

Values-form is evaluated, and each of the vars is bound to the respective value returned by that
form. If there are more vars than values returned, extra values of nil are given to the remaining
vars. If there are more values than vars, the excess values are discarded. The vars are bound to
the values over the execution of the forms, which make up an implicit progn. The consequences
are unspecified if a type declaration is specified for a var, but the value to which that var is bound
is not consistent with the type declaration.

The scopes of the name binding and declarations do not include the values-form.
Examples:

(multiple-value-bind (f r)
(floor 130 11)
(list £ r)) — (11 9)

See Also:

let, multiple-value-call
Notes:

(multiple-value-bind ({var}*) values-form {form}*)
= (multiple-value-call #’(lambda (%optional {var}* &rest #1=#:ignore)
(declare (ignore #1#))
{form}*)
values-form)

5-80 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

mult iple-value-call Special Operator

Syntax:

multiple-value-call function-form form®* — {result}*

Arguments and Values:
function-form—a form; evaluated to produce function.

function—a function designator resulting from the evaluation of function-form.
form—a form.

results—the values returned by the function.

Description:
Applies function to a list of the objects collected from groups of multiple valuess.

multiple-value-call first evaluates the function-form to obtain function, and then evaluates each
form. All the values of each form are gathered together (not just one value from each) and given
as arguments to the function.

Examples:

(multiple-value-call #’list 1 ’/ (values 2 3) ’/ (values) ’/ (floor 2.5))
— (1/23//20.5)

(+ (floor 5 3) (floor 19 4)) = (+ 1 4)

— 5

(multiple-value-call #’+ (floor 5 3) (floor 19 4)) = (+ 1 2 4 3)

— 10

See Also:

multiple-value-list, multiple-value-bind

multiple-value-list Macro

Syntax:

multiple-value-list form — list

Arguments and Values:
form—a form; evaluated as described below.

list—a list of the values returned by form.

Data and Control Flow 5—81

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

multiple-value-list evaluates form and creates a list of the multiple valuess it returns.

Examples:

(multiple-value-list (floor -3 4)) — (-1 1)

See Also:

values-list, multiple-value-call

Notes:
multiple-value-list and values-list are inverses of each other.
(multiple-value-list form) = (multiple-value-call #’list form)
multiple-value-progl Special Operator
Syntax:

multiple-value-progl first-form {form}* — first-form-results

Arguments and Values:
first-form—a. form; evaluated as described below.

form—a form; evaluated as described below.

first-form-results—the values resulting from the evaluation of first-form.

Description:

multiple-value-progl evaluates first-form and saves all the values produced by that form. It then

evaluates each form from left to right, discarding their values.
Examples:

(setq temp (1 2 3)) — (1 2 3)
(multiple-value-progl
(values-list temp)
(setq temp nil)
(values-list temp)) — 1, 2, 3

See Also:
progl

5-82 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

multiple-value-setq

multiple-value-setq Macro

Syntax:

multiple-value-setq vars form — result

Arguments and Values:
vars—a list of symbols that are either variable names or names of symbol macros.

form—a form.

result—The primary value returned by the form.
Description:

multiple-value-setq assigns values to vars.

The form is evaluated, and each var is assigned to the corresponding value returned by that form.
If there are more vars than values returned, nil is assigned to the extra vars. If there are more
values than vars, the extra values are discarded.

If any var is the name of a symbol macro, then it is assigned as if by setf. Specifically,
(multiple-value-setq (symboly ... symbol,) value-producing-form)
is defined to always behave in the same way as

(values (setf (values symbol; ... symbol,) wvalue-producing-form))

in order that the rules for order of evaluation and side-effects be consistent with those used by
setf. See Section 5.1.2.3 (VALUES Forms as Places).

Examples:

(multiple-value-setq (quotient remainder) (truncate 3.2 2)) — 1
quotient — 1

remainder — 1.2

(multiple-value-setq (a b ¢) (values 1 2)) — 1

a— 1

b— 2

c — NIL

(multiple-value-setq (a b) (values 4 5 6)) — 4

a— 4

b — 5

See Also:

setq, symbol-macrolet

Data and Control Flow 5—83

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

values Accessor

Syntax:

values &rest object — {object}*

(setf (values &rest place) new-values)

Arguments and Values:
object—an object.

place—a place.
new-value—an object.

Description:
values returns the objects as multiple valuess.

setf of values is used to store the multiple valuess new-values into the places. See Section 5.1.2.3
(VALUES Forms as Places).

Examples:

(values) — (no values)
(values 1) — 1
(values 1 2) — 1, 2
(values 1 23) — 1, 2, 3
(values (values 1 2 3) 45) — 1, 4, 5
(defun polar (x y)
(values (sqrt (+ (x x x) (x y y))) (atan y x))) — POLAR
(multiple-value-bind (r theta) (polar 3.0 4.0)
(vector r theta))
— #(5.0 0.927295)

Sometimes it is desirable to indicate explicitly that a function returns exactly one value. For
example, the function

(defun foo (x y)
(floor (+ x y) y)) — FOO

returns two values because floor returns two values. It may be that the second value makes no
sense, or that for efficiency reasons it is desired not to compute the second value. values is the
standard idiom for indicating that only one value is to be returned:

5-84 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(defun foo (x y)
(values (floor (+ x y) y))) — FOO

This works because values returns exactly one value for each of args; as for any function call, if
any of args produces more than one value, all but the first are discarded.

See Also:

values-list, multiple-value-bind, multiple-values-limit, Section 3.1 (Evaluation)

Notes:
Since values is a function, not a macro or special form, it receives as arguments only the primary
values of its argument forms.
values-list Punction
Syntax:

values-list list — {element}*

Arguments and Values:
list—a list.

elements—the elements of the list.

Description:
Returns the elements of the list as multiple valuess.

Examples:

(values-list nil) — (no values)
(values-list (1)) — 1
(values-list (1 2)) — 1, 2
(values-list (1 2 3)) — 1, 2, 3

Exceptional Situations:
Should signal type-error if its argument is not a proper list.

See Also:

multiple-value-bind, multiple-value-list, multiple-values-limit, values
Notes:

(values-list list) = (apply #’values [ist)

(equal x (multiple-value-list (values-list x))) returns true for all lists x.

Data and Control Flow 5—85

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

multiple-values-limit Constant Variable

Constant Value:
An integer not smaller than 20, the exact magnitude of which is implementation-dependent.

Description:
The upper exclusive bound on the number of values that may be returned from a function, bound
or assigned by multiple-value-bind or multiple-value-setq, or passed as a first argument to
nth-value. (If these individual limits might differ, the minimum value is used.)

See Also:

lambda-parameters-limit, call-arguments-limit

Notes:

Implementors are encouraged to make this limit as large as possible.

nt h-Value Macro

Syntax:

nth-value n form — object

Arguments and Values:
n—a non-negative integer; evaluated.

form—a form; evaluated as described below.
object—an object.

Description:
Evaluates n and then form, returning as its only value the nth value yielded by form, or nil if n
is greater than or equal to the number of values returned by form. (The first returned value is
numbered 0.)

Examples:

(nth-value O (values ’a ’b)) — A

(nth-value 1 (values ’a ’b)) — B

(nth-value 2 (values ’a ’b)) — NIL

(let* ((x 83927472397238947423879243432432432)
(y 32423489732)

5-86 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(a (nth-value 1 (floor x y)))
(b (mod x y)))
(values a b (= a b)))
— 3332987528, 3332987528, true

See Also:

multiple-value-list, nth

Notes:
Operationally, the following relationship is true, although nth-value might be more efficient in
some implementations because, for example, some consing might be avoided.
(nth-value n form) = (nth n (multiple-value-list form))
prog, progs= Macro
Syntax:

prog ({var | (var [init-form])}*) {declaration}* {tag | statement}*
— {result}*

prog* ({var | (var [init-form])}*) {declaration}* {tag | statement}*
— {result}*

Arguments and Values:
var—variable name.

init-form—a. form.

declaration—a declare expression; not evaluated.

tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

results—nil if a normal return occurs, or else, if an explicit return occurs, the values that were
transferred.

Description:

Three distinct operations are performed by prog and prog*: they bind local variables, they
permit use of the return statement, and they permit use of the go statement. A typical prog
looks like this:

(prog (varl var2 (var3 init-form-3) var4 (varb5 init-form-5))
{declaration}*

Data and Control Flow 5—87

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

prog, progs=

statementl
tagl

statement2

statement3

statement4
tag2

statement5b

)

For prog, init-forms are evaluated first, in the order in which they are supplied. The vars are then
bound to the corresponding values in parallel. If no init-form is supplied for a given var, that var
is bound to nil.

The body of prog is executed as if it were a tagbody form; the go statement can be used to
transfer control to a tag. Tags label statements.

prog implicitly establishes a block named nil around the entire prog form, so that return can be
used at any time to exit from the prog form.

The difference between prog* and prog is that in prog* the binding and initialization of the vars
is done sequentially, so that the init-form for each one can use the values of previous ones.

Examples:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

(setqa 1) — 1

(prog ((a 2) (b a)) (return (if (= a b) ’= ’/=))) — /=
(progx ((a 2) (b a)) (return (if (= a b) ’= ’/=))) — =
(prog () ’no-return-value) — NIL

(defun king-of-confusion (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(prog (x y 2) ;Initialize x, y, z to NIL
(setq y (car w) z (cdr w))
loop
(cond ((null y) (return x))
((null z) (go err)))
rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))
(go loop)
err

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(cerror "Will self-pair extraneous items"
"Mismatch - gleep! ~S" y)

(setq z y)

(go rejoin))) — KING-OF-CONFUSION

This can be accomplished more perspicuously as follows:

(defun prince-of-clarity (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))
(x () (cons (cons (car y) (car z)) x)))
((aull y) x)
(when (null z)
(cerror "Will self-pair extraneous items"
"Mismatch - gleep! ~S" y)
(setq z y)))) — PRINCE-OF-CLARITY

See Also:

block, let, tagbody, go, return, Section 3.1 (Evaluation)
Notes:

prog can be explained in terms of block, let, and tagbody as follows:

(prog variable-list declaration . body)
= (block nil (let variable-list declaration (tagbody . body)))

progl, prog2 Macro

Syntax:

progl first-form {form}* — result-1
prog2 first-form second-form {form}* — result-2

Arguments and Values:
first-form—a form; evaluated as described below.

second-form—a form; evaluated as described below.
forms—an implicit progn; evaluated as described below.

result-1—the primary value resulting from the evaluation of first-form.

Data and Control Flow 5—89

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

progl, prog2

result-2—the primary value resulting from the evaluation of second-form.

Description:

progl evaluates first-form and then forms, yielding as its only value the primary value yielded by
first-form.

prog2 evaluates first-form, then second-form, and then forms, yielding as its only value the pri-
mary value yielded by first-form.

Examples:

(setq temp 1) — 1
(progl temp (print temp) (incf temp) (print temp))
> 1
> 2
— 1
(progl temp (setq temp nil)) — 2
temp — NIL
(progl (values 1 2 3) 4) — 1
(setq temp (list ’a ’b ’c))
(progl (car temp) (setf (car temp) ’alpha)) — A
temp — (ALPHA B C)
(flet ((swap-symbol-values (x y)
(setf (symbol-value x)
(progl (symbol-value y)
(setf (symbol-value y) (symbol-value x))))))
(let ((*foo* 1) (*barx 2))
(declare (special *foo* *barx))
(swap-symbol-values ’*foo* ’xbar)
(values *foo* *bar*)))
— 2, 1
(setq temp 1) — 1
(prog2 (incf temp) (incf temp) (incf temp)) — 3
temp — 4
(prog2 1 (values 2 3 4) 5) — 2

See Also:

multiple-value-progl, progn

Notes:

progl and prog2 are typically used to evaluate one or more forms with side effects and return a
value that must be computed before some or all of the side effects happen.

(progl {form}*) = (values (multiple-value-progl {form}*))
(prog2 forml {form}*) = (let () forml (progi {form}*))

5-90 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

progn Special Operator

Syntax:

progn {form}* — {result}*

Arguments and Values:
forms—an implicit progn.

results—the values of the forms.

Description:
progn evaluates forms, in the order in which they are given.

The values of each form but the last are discarded.

If progn appears as a top level form, then all forms within that progn are considered by the
compiler to be top level forms.

Examples:

(progn) — NIL
(progn 1 2 3) — 3
(progn (values 1 2 3)) — 1, 2, 3
(setga 1) — 1
(if a

(progn (setq a nil) ’here)

(progn (setq a t) ’there)) — HERE
a — NIL

See Also:
progl, prog2, Section 3.1 (Evaluation)

Notes:

Many places in Common Lisp involve syntax that uses implicit progns. That is, part of their
syntax allows many forms to be written that are to be evaluated sequentially, discarding the
results of all forms but the last and returning the results of the last form. Such places include,
but are not limited to, the following: the body of a lambda expression; the bodies of various
control and conditional forms (e.g., case, catch, progn, and when).

Data and Control Flow 5-91

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-modify-macro

define-modify-macro Macro

Syntax:

define-modify-macro name lambda-list function [documentation] — name

Arguments and Values:
name—a symbol.

lambda-list—a define-modify-macro lambda list
function—a symbol.

documentation—a string; not evaluated.

Description:
define-modify-macro defines a macro named name to read and write a place.

The arguments to the new macro are a place, followed by the arguments that are supplied in
lambda-list. Macros defined with define-modify-macro correctly pass the environment parameter
to get-setf-expansion.

When the macro is invoked, function is applied to the old contents of the place and the lambda-list
arguments to obtain the new value, and the place is updated to contain the result.

Except for the issue of avoiding multiple evaluation (see below), the expansion of a
define-modify-macro is equivalent to the following:

(defmacro name (reference . lambda-list)
documentation
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))

where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate provision is made
for a rest parameter.

The subforms of the macro calls defined by define-modify-macro are evaluated as specified in
Section 5.1.1.1 (Evaluation of Subforms to Places).

Documentation is attached as a documentation string to name (as kind function) and to the
macro function.

If a define-modify-macro form appears as a top level form, the compiler must store the macro
definition at compile time, so that occurrences of the macro later on in the file can be expanded
correctly.

5-92 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(define-modify-macro appendf (&rest args)
append "Append onto list") — APPENDF
(setqg x ’(abc) yx) — (ABOC)
(appendf x (d e £f) (1 23)) - (ABCDEF123)
x— (ABCDEF123)
y — (ABOC
(define-modify-macro new-incf (&optional (delta 1)) +)
(define-modify-macro unionf (other-set &rest keywords) union)

Side Effects:

A macro definition is assigned to name.

See Also:

defsetf, define-setf-expander, documentation, Section 3.4.11 (Syntactic Interaction of Documen-
tation Strings and Declarations)

defsetf Macro

Syntax:
The “short form”:

defsetf access-fn update-fn [documentation]
— access-fn

The “long form”:

defsetf access-fn lambda-list ({store-variable}*) [{declaration}* | documentation] {form}*
— access-fn

Arguments and Values:
access-fn—a, symbol which names a function or a macro.

update-fn-—a symbol naming a function or macro.
lambda-list—a defsetf lambda list.
store-variable—a symbol (a variable name).
declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

form—a form.

Data and Control Flow 5—93

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defsetf

Description:

defsetf defines how to setf a place of the form (access-fn ...) for relatively simple cases. (See
define-setf-expander for more general access to this facility.) It must be the case that the
function or macro named by access-fn evaluates all of its arguments.

defsetf may take one of two forms, called the “short form” and the “long form,” which are
distinguished by the type of the second argument.

When the short form is used, update-fn must name a function (or macro) that takes one more
argument than access-fn takes. When setf is given a place that is a call on access-fn, it expands
into a call on update-fn that is given all the arguments to access-fn and also, as its last argument,
the new value (which must be returned by update-fn as its value).

The long form defsetf resembles defmacro. The lambda-list describes the arguments of access-
fn. The store-variables describe the value or values to be stored into the place. The body must

compute the expansion of a setf of a call on access-fn. The expansion function is defined in the
same lexical environment in which the defsetf form appears.

During the evaluation of the forms, the variables in the lambda-list and the store-variables are
bound to names of temporary variables, generated as if by gensym or gentemp, that will be
bound by the expansion of setf to the values of those subforms. This binding permits the forms
to be written without regard for order-of-evaluation issues. defsetf arranges for the temporary
variables to be optimized out of the final result in cases where that is possible.

The body code in defsetf is implicitly enclosed in a block whose name is access-fn
defsetf ensures that subforms of the place are evaluated exactly once.
Documentation is attached to access-fn as a documentation string of kind setf.

If a defsetf form appears as a top level form, the compiler must make the setf expander avail-
able so that it may be used to expand calls to setf later on in the file. Users must ensure that
the forms, if any, can be evaluated at compile time if the access-fn is used in a place later in

the same file. The compiler must make these setf expanders available to compile-time calls to
get-setf-expansion when its environment argument is a value received as the environment param-
eter of a macro.

Examples:

The effect of
(defsetf symbol-value set)

is built into the Common Lisp system. This causes the form (setf (symbol-value foo) fu) to
expand into (set foo fu).

Note that

(defsetf car rplaca)

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

defsetf

would be incorrect because rplaca does not return its last argument.

(defun middleguy (x) (nth (truncate (1- (list-length x)) 2) x)) — MIDDLEGUY
(defun set-middleguy (x v)
(unless (null x)
(rplaca (nthcdr (truncate (1- (list-length x)) 2) x) v))
v) — SET-MIDDLEGUY
(defsetf middleguy set-middleguy) — MIDDLEGUY
(setq a (list ’a ’b ’c ’d)
b (list ’x)
c (1ist 1 23 (list 4 56) 78 9)) — (123 (456) 7 89)
(setf (middleguy a) 3) — 3
(setf (middleguy b) 7) — 7
(setf (middleguy (middleguy c)) ’middleguy-symbol) — MIDDLEGUY-SYMBOL
a— (A3CD
b — (7)
¢ — (1 2 3 (4 MIDDLEGUY-SYMBOL 6) 7 8 9)

An example of the use of the long form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)
,hew-sequence)) — SUBSEQ

(defvar *xy* (make-array ’(10 10)))
(defun xy (&key ((x x) 0) ((y y) 0)) (aref *xy* x y)) — XY
(defun set-xy (new-value &key ((x x) 0) ((y y) 0))
(setf (aref *xy* x y) new-value)) — SET-XY
(defsetf xy (&key ((x x) 0) ((y y) 0)) (store)
‘(set-xy ,store ’x ,x ’y ,y)) — XY
(get-setf-expansion ’(xy a b))
— (#:t0 #:t1),
(a b),
(#:store),
((lambda (&key ((x #:x)) ((y #:y)))
(set-xy #:store ’x #:x ’y #:y))
#:t0 #:t1),
(xy #:t0 #:t1)
(xy ’x 1) — NIL
(setf (xy ’x 1) 1) — 1
(xy ’x 1) — 1
(let ((a ’x) (b ’y))
(setf (xy a1 b 2) 3)
(setf (xy b 5 a 9) 14))
— 14
(xy ’y 0 ’x 1) — 1

Data and Control Flow 5—95

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(xy ’x 1’y 2) — 3

See Also:

Notes:

documentation, setf, define-setf-expander, get-setf-expansion, Section 5.1 (Generalized Refer-
ence), Section 3.4.11 (Syntactic Interaction of Documentation Strings and Declarations)

forms must include provision for returning the correct value (the value or values of store-variable).
This is handled by forms rather than by defsetf because in many cases this value can be returned
at no extra cost, by calling a function that simultaneously stores into the place and returns the
correct value.

A setf of a call on access-fn also evaluates all of access-fn’s arguments; it cannot treat any of them
specially. This means that defsetf cannot be used to describe how to store into a generalized
reference to a byte, such as (1db field reference). define-setf-expander is used to handle
situations that do not fit the restrictions imposed by defsetf and gives the user additional control.

define-setf-expander Macro

Syntax:

define-setf-expander access-fn lambda-list
[{declaration}* | documentation] {form}*

— access-fn

Arguments and Values:

access-fn—a symbol that names a function or macro.
lambda-list — macro lambda list.

declaration—a declare expression; not evaluated.
documentation—a string; not evaluated.

forms—an implicit progn.

Description:

define-setf-expander specifies the means by which setf updates a place that is referenced by
access-fn.

When setf is given a place that is specified in terms of access-fn and a new value for the place, it
is expanded into a form that performs the appropriate update.

The lambda-list supports destructuring. See Section 3.4.4 (Macro Lambda Lists).

5-96 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

define-setf-expander

Documentation is attached to access-fn as a documentation string of kind setf.

Forms constitute the body of the setf expander definition and must compute the setf expansion
for a call on setf that references the place by means of the given access-fn. The setf expander
function is defined in the same lexical environment in which the define-setf-expander form
appears. While forms are being executed, the variables in lambda-list are bound to parts of
the place form. The body forms (but not the lambda-list) in a define-setf-expander form are
implicitly enclosed in a block whose name is access-fn.

The evaluation of forms must result in the five values described in Section 5.1.1.2 (Setf Expan-
sions).

If a define-setf-expander form appears as a top level form, the compiler must make the setf ez-
pander available so that it may be used to expand calls to setf later on in the file. Programmers
must ensure that the forms can be evaluated at compile time if the access-fn is used in a place
later in the same file. The compiler must make these setf expanders available to compile-time
calls to get-setf-expansion when its environment argument is a value received as the environment
parameter of a macro.

Examples:

(defun lastguy (x) (car (last x))) — LASTGUY
(define-setf-expander lastguy (x &environment env)
"Set the last element in a list to the given value."
(multiple-value-bind (dummies vals newval setter getter)
(get-setf-expansion x env)
(let ((store (gensym)))
(values dummies
vals
‘(,store)
‘(progn (rplaca (last ,getter) ,store) ,store)
‘(lastguy ,getter))))) — LASTGUY
(setq a (list ’a ’b ’c ’d)
b (list ’x)
c (list 1 2 3 (1ist 45 6))) — (1 2 3 (4 5 6))
(setf (lastguy a) 3) — 3
(setf (lastguy b) 70 — 7
(setf (lastguy (lastguy c)) ’lastguy-symbol) — LASTGUY-SYMBOL
a— (ABC 3)
b — (7)
c — (1 2 3 (4 5 LASTGUY-SYMBOL))

;55 Setf expander for the form (LDB bytespec int).

;55 Recall that the int form must itself be suitable for SETF.

(define-setf-expander 1ldb (bytespec int &environment env)
(multiple-value-bind (temps vals stores

Data and Control Flow 5—97

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

store-form access-form)

(get-setf-expansion int env);Get setf expansion for int.

(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.
(stemp (first stores))) ;Temp var for int to store.
(if (cdr stores) (error "Can’t expand this."))
;55 Return the setf expansion for LDB as five values.

(values (cons btemp temps) ;Temporary variables.
(cons bytespec vals) ;Value forms.
(list store) ;Store variables.

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))

,store-form
,store) ;Storing form.
‘(ldb ,btemp ,access-form) ;Accessing form.

)

See Also:

setf, defsetf, documentation, get-setf-expansion, Section 3.4.11 (Syntactic Interaction of

Documentation Strings and Declarations)

Notes:

define-setf-expander differs from the long form of defsetf in that while the body is being exe-
cuted the variables in lambda-list are bound to parts of the place form, not to temporary vari-
ables that will be bound to the values of such parts. In addition, define-setf-expander does not
have defsetf’s restriction that access-fn must be a function or a function-like macro; an arbitrary

defmacro destructuring pattern is permitted in lambda-list.

get-setf-expansion

Function

Syntax:

get-setf-expansion place &optional environment
— vars, vals, store-vars, writer-form, reader-form

Arguments and Values:
place—a place.

environment—an environment object.

vars, vals, store-vars, writer-form, reader-form—a setf expansion.

5-98 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Description:

Determines five values constituting the setf expansion for place in environment; see Section 5.1.1.2
(Setf Expansions).

If environment is not supplied or nil, the environment is the null lexical environment.
Examples:

(get-setf-expansion ’x)
— NIL, NIL, (#:G0001), (SETQ X #:G0001), X

533 This macro is like POP

(defmacro xpop (place &environment env)
(multiple-value-bind (dummies vals new setter getter)
(get-setf-expansion place env)
‘(let* (,0@(mapcar #’list dummies vals) (,(car new) ,getter))

(if (cdr new) (error "Can’t expand this."))

(progl (car ,(car new))
(setq ,(car new) (cdr ,(car new)))
,setter))))

(defsetf frob (x) (value)
‘(setf (car ,x) ,value)) — FROB
;535 The following is an error; an error might be signaled at macro expansion time
(flet ((frob (x) (cdr x))) ;Invalid
(xpop (frob z)))

See Also:
defsetf, define-setf-expander, setf
Notes:
Any compound form is a valid place, since any compound form whose operator f has no setf
expander are expanded into a call to (setf f).
setf, psetf Macro
Syntax:

setf {|pair}* — {result}*

Data and Control Flow 5—99

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

setf, psetf

psetf {|pair}* — nil
pair::=place newvalue

Arguments and Values:
place—a place.

newvalue—a form.

results—the multiple valuess returned by the storing form for the last place, or nil if there are no
pairs.

Description:
setf changes the value of place to be newvalue.

(setf place newvalue) expands into an update form that stores the result of evaluating newvalue
into the location referred to by place. Some place forms involve uses of accessors that take
optional arguments. Whether those optional arguments are permitted by setf, or what their use
is, is up to the setf expander function and is not under the control of setf. The documentation
for any function that accepts &optional, &rest, or &key arguments and that claims to be usable
with setf must specify how those arguments are treated.

If more than one pair is supplied, the pairs are processed sequentially; that is,

(setf place-1 newvalue-1
place-2 newvalue-2

place-N newvalue-N)
is precisely equivalent to

(progn (setf place-1 newvalue-1)
(setf place-2 newvalue-2)

(setf place-N newvalue-N))

For psetf, if more than one pair is supplied then the assignments of new values to places are done
in parallel. More precisely, all subforms (in both the place and newvalue forms) that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed in an unpredictable order.

For detailed treatment of the expansion of setf and psetf, see Section 5.1.2 (Kinds of Places).
Examples:

(setq x (cons ’a ’b) y (list 1 2 3)) — (1 2 3)
(setf (car x) ’x (cadr y) (car x) (cdr x) y) — (1 X 3)
x — (X1X3)

5-100 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

y — (1X3)

(setq x (cons ’a ’b) y (list 1 2 3)) — (1 2 3)
(psetf (car x) ’x (cadr y) (car x) (cdr x) y) — NIL
x — (X143)

y — (1 A3

Affected By:

define-setf-expander, defsetf, *macroexpand-hook*

See Also:

define-setf-expander, defsetf, macroexpand-1, rotatef, shiftf, Section 5.1 (Generalized Refer-
ence)

shiftf Macro

Syntax:

shiftf {place}’ newvalue — old-value-1

Arguments and Values:
place—a place.

newvalue—a form; evaluated.
old-value-1—an object (the old value of the first place).

Description:

shiftf modifies the values of each place by storing newvalue into the last place, and shifting the
values of the second through the last place into the remaining places.

If newvalue produces more values than there are store variables, the extra values are ignored. If
newvalue produces fewer values than there are store variables, the missing values are set to nil.

In the form (shiftf placel place2 ... placen newvalue), the values in placel through placen
are read and saved, and newwvalue is evaluated, for a total of n+1 values in all. Values 2 through
n+1 are then stored into placel through placen, respectively. It is as if all the places form a shift
register; the newvalue is shifted in from the right, all values shift over to the left one place, and
the value shifted out of placel is returned.

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(setq x (list 1 2 3) y ’trash) — TRASH

Data and Control Flow 5—101

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(shiftf y x (cdr x) ’(hi there)) — TRASH
x — (2 3)
y — (1 HI THERE)

(setq x (list ’a ’b ’c)) — (A B C)
(shiftf (cadr x) ’z) — B

x — (A ZC)

(shiftf (cadr x) (cddr x) ’q) — Z

x— (A © . Q

(setgn 0) — O

(setq x (list ’a ’b ’c ’d)) — (A B C D)
(shiftf (nth (setqn (+ n 1)) x) ’z) — B
x — (A ZCD)

Affected By:

define-setf-expander, defsetf, *macroexpand-hook*

See Also:
setf, rotatef, Section 5.1 (Generalized Reference)
Notes:
The effect of (shiftf placel place2 ... placen newvalue) is roughly equivalent to

(let ((varil placel)
(var2 place2)

(varn placen)

(var0 newvalue))
(setf placel var2)
(setf place2 var3)

(setf placen var0)
varl)

except that the latter would evaluate any subforms of each place twice, whereas shiftf evaluates
them once. For example,

(setqn 0) — 0
(setq x (list ’a ’b ’c ’d)) — (A B C D)
(progl (nth (setqn (+ n 1)) x)
(setf (nth (setqn (+ n 1)) x) ’z)) — B
x — (A B ZD)

5-102 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

rotatef

rotat ef Macro

Syntax:

rotatef {place}* — nil

Arguments and Values:
place—a place.

Description:
rotatef modifies the values of each place by rotating values from one place into another.

If a place produces more values than there are store variables, the extra values are ignored. If a
place produces fewer values than there are store variables, the missing values are set to nil.

In the form (rotatef placel place2 ... placen), the values in placel through placen are read
and written. Values 2 through n and value 1 are then stored into placel through placen. It is as
if all the places form an end-around shift register that is rotated one place to the left, with the
value of placel being shifted around the end to placen.

For information about the evaluation of subforms of places, see Section 5.1.1.1 (Evaluation of
Subforms to Places).

Examples:

(let ((n 0)
(x (list ’a ’b ’c ’d ’e ’f ’g)))
(rotatef (nth (incf n) x)
(nth (incf n) x)
(nth (incf n) x))
x) - (ACDBEF ®

See Also:
define-setf-expander, defsetf, setf, shiftf, *macroexpand-hook*, Section 5.1 (Generalized
RCfCI‘CHCC)

Notes:
The effect of (rotatef placel place2 ... placen) is roughly equivalent to

(psetf placel place2
place2 place3

placen placel)

except that the latter would evaluate any subforms of each place twice, whereas rotatef evaluates
them once.

Data and Control Flow 5—103

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

control-error Condition Type

Class Precedence List:
control-error, error, serious-condition, condition, t

Description:
The type control-error consists of error conditions that result from invalid dynamic transfers of
control in a program. The errors that result from giving throw a tag that is not active or from
giving go or return-from a tag that is no longer dynamically available are of type control-error.

program-error Condition Type

Class Precedence List:
programe-error, error, serious-condition, condition, t

Description:
The type program-error consists of error conditions related to incorrect program syntax. The
errors that result from naming a go tag or a block tag that is not lexically apparent are of type
programe-error.

undefined-function Condition Type

Class Precedence List:
undefined-function, cell-error, error, serious-condition, condition, t

Description:

The type undefined-function consists of error conditions that represent attempts to read the
definition of an undefined function.

The name of the cell (see cell-error) is the function name which was funbound.

See Also:

cell-error-name

5-104 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Programming Language—Common Lisp

6. Iteration

ii Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Iteration iii

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1 The LOOP Facility

6.1.1 Overview of the Loop Facility

6.1.1.1

The loop macro performs iteration.

Simple vs Extended Loop

loop forms are partitioned into two categories: simple loop forms and extended loop forms.

6.1.1.1.1 Simple Loop

A simple loop form is one that has a body containing only compound forms. Each form is
evaluated in turn from left to right. When the last form has been evaluated, then the first form is
evaluated again, and so on, in a never-ending cycle. A simple loop form establishes an implicit
block named nil. The execution of a simple loop can be terminated by explicitly transfering
control to the implicit block (using return or return-from) or to some ezit point outside of the
block (e.g., using throw, go, or return-from).

6.1.1.1.2 Extended Loop

6.1.1.2

An extended loop form is one that has a body containing atomic expressions. When the loop
macro processes such a form, it invokes a facility that is commonly called “the Loop Facility.”

The Loop Facility provides standardized access to mechanisms commonly used in iterations
through Loop schemas, which are introduced by loop keywords.

The body of an extended loop form is divided into loop clauses, each which is in turn made up of
loop keywords and forms.

Loop Keywords

Loop keywords are not true keywordsy; they are special symbols, recognized by name rather than
object identity, that are meaningful only to the loop facility. A loop keyword is a symbol but is
recognized by its name (not its identity), regardless of the packages in which it is accessible.

In general, loop keywords are not external symbols of the COMMON-LISP package, except in the
coincidental situation that a symbol with the same name as a loop keyword was needed for some
other purpose in Common Lisp. For example, there is a symbol in the COMMON-LISP package whose
name is "UNLESS" but not one whose name is "UNTIL".

If no loop keywords are supplied in a loop form, the Loop Facility executes the loop body repeat-
edly; see Section 6.1.1.1.1 (Simple Loop).

Iteration 6-1

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.3

6.1.1.4

Parsing Loop Clauses

The syntactic parts of an extended loop form are called clauses; the rules for parsing are deter-
mined by that clause’s keyword. The following example shows a loop form with six clauses:

(loop for i from 1 to (compute-top-value) ; first clause
while (not (unacceptable i)) ; second clause
collect (square i) ; third clause
do (format t "Working on "D now" i) ; fourth clause
when (evenp i) ; fifth clause

do (format t "°D is a non-odd number" i)
finally (format t "About to exit!")) ; sixth clause

Each loop keyword introduces either a compound loop clause or a simple loop clause that can con-
sist of a loop keyword followed by a single form. The number of forms in a clause is determined
by the loop keyword that begins the clause and by the auxiliary keywords in the clause. The
keywords do, doing, initially, and finally are the only loop keywords that can take any number
of forms and group them as an implicit progn.

Loop clauses can contain auxiliary keywords, which are sometimes called prepositions. For
example, the first clause in the code above includes the prepositions from and to, which mark the
value from which stepping begins and the value at which stepping ends.

For detailed information about loop syntax, see the macro loop.

Expanding Loop Forms

A loop macro form expands into a form containing one or more binding forms (that establish
bindings of loop variables) and a block and a tagbody (that express a looping control structure).
The variables established in loop are bound as if by let or lambda.

Implementations can interleave the setting of initial values with the bindings. However, the
assignment of the initial values is always calculated in the order specified by the user. A variable
is thus sometimes bound to a meaningless value of the correct type, and then later in the prologue
it is set to the true initial value by using setq. One implication of this interleaving is that it

is implementation-dependent whether the lexical environment in which the initial value forms
(variously called the forml1, form2, form3, step-fun, vector, hash-table, and package) in any for-
as-subclause, except for-as-equals-then, are evaluated includes only the loop variables preceding
that form or includes more or all of the loop variables; the form1 and form2 in a for-as-equals-then
form includes the lexical environment of all the loop variables.

After the form is expanded, it consists of three basic parts in the tagbody: the loop prologue, the
loop body, and the loop epilogue.

Loop prologue

The loop prologue contains forms that are executed before iteration begins, such as
any automatic variable initializations prescribed by the variable clauses, along with any

6—2 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.5

initially clauses in the order they appear in the source.

Loop body

The loop body contains those forms that are executed during iteration, including
application-specific calculations, termination tests, and variable stepping;.

Loop epilogue

The loop epilogue contains forms that are executed after iteration terminates, such as
finally clauses, if any, along with any implicit return value from an accumulation clause
or an termination-test clause.

Some clauses from the source form contribute code only to the loop prologue; these clauses must
come before other clauses that are in the main body of the loop form. Others contribute code
only to the loop epilogue. All other clauses contribute to the final translated form in the same
order given in the original source form of the loop.

Expansion of the loop macro produces an implicit block named nil unless named is supplied. Thus,
return-from (and sometimes return) can be used to return values from loop or to exit loop.

Summary of Loop Clauses

Loop clauses fall into one of the following categories:

6.1.1.5.1 Summary of Variable Initialization and Stepping Clauses

The for and as constructs provide iteration control clauses that establish a variable to be initial-
ized. for and as clauses can be combined with the loop keyword and to get parallel initialization
and stepping:. Otherwise, the initialization and stepping; are sequential.

The with construct is similar to a single let clause. with clauses can be combined using the loop
keyword and to get parallel initialization.

For more information, see Section 6.1.2 (Variable Initialization and Stepping Clauses).

6.1.1.5.2 Summary of Value Accumulation Clauses

The collect (or collecting) construct takes one form in its clause and adds the value of that
form to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The append (or appending) construct takes one form in its clause and appends the value of that
form to the end of a list of values. By default, the list of values is returned when the loop
finishes.

The nconc (or nconcing) construct is similar to the append construct, but its list values are
concatenated as if by the function nconc. By default, the list of values is returned when the loop
finishes.

Iteration 6—3

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

The sum (or summing) construct takes one form in its clause that must evaluate to a number and
accumulates the sum of all these numbers. By default, the cumulative sum is returned when the
loop finishes.

The count (or counting) construct takes one form in its clause and counts the number of times
that the form evaluates to true. By default, the count is returned when the loop finishes.

The minimize (or minimizing) construct takes one form in its clause and determines the minimum
value obtained by evaluating that form. By default, the minimum value is returned when the
loop finishes.

The maximize (or maximizing) construct takes one form in its clause and determines the maximum
value obtained by evaluating that form. By default, the maximum value is returned when the
loop finishes.

For more information, see Section 6.1.3 (Value Accumulation Clauses).

6.1.1.5.3 Summary of Termination Test Clauses

The for and as constructs provide a termination test that is determined by the iteration control
clause.

The repeat construct causes termination after a specified number of iterations. (It uses an
internal variable to keep track of the number of iterations.)

The while construct takes one form, a test, and terminates the iteration if the test evaluates to
false. A while clause is equivalent to the expression (if (not test) (loop-finish)).

The until construct is the inverse of while; it terminates the iteration if the test evaluates to any
non-nil value. An until clause is equivalent to the expression (if test (loop-finish)).

The always construct takes one form and terminates the loop if the form ever evaluates to false;
in this case, the loop form returns nil. Otherwise, it provides a default return value of t.

The never construct takes one form and terminates the loop if the form ever evaluates to true; in
this case, the loop form returns nil. Otherwise, it provides a default return value of t.

The thereis construct takes one form and terminates the loop if the form ever evaluates to a
non-nil object; in this case, the loop form returns that object. Otherwise, it provides a default
return value of nil.

If multiple termination test clauses are specified, the loop form terminates if any are satisfied.

For more information, see Section 6.1.4 (Termination Test Clauses).

6—4 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.5.4 Summary of Unconditional Execution Clauses

The do (or doing) construct evaluates all forms in its clause.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a named clause, or nil if there is no named clause.

For more information, see Section 6.1.5 (Unconditional Execution Clauses).

6.1.1.5.5 Summary of Conditional Execution Clauses

The if and when constructs take one form as a test and a clause that is executed when the test
yields true. The clause can be a value accumulation, unconditional, or another conditional clause;
it can also be any combination of such clauses connected by the loop and keyword.

The loop unless construct is similar to the loop when construct except that it complements the
test result.

The loop else construct provides an optional component of if, when, and unless clauses that is
executed when an if or when test yields false or when an unless test yields true. The component
is one of the clauses described under if.

The loop end construct provides an optional component to mark the end of a conditional clause.

For more information, see Section 6.1.6 (Conditional Execution Clauses).

6.1.1.5.6 Summary of Miscellaneous Clauses

6.1.1.6

The loop named construct gives a name for the block of the loop.

The loop initially construct causes its forms to be evaluated in the loop prologue, which
precedes all loop code except for initial settings supplied by the constructs with, for, or as.

The loop finally construct causes its forms to be evaluated in the loop epilogue after normal
iteration terminates.

For more information, see Section 6.1.7 (Miscellaneous Clauses).

Order of Execution

With the exceptions listed below, clauses are executed in the loop body in the order in which
they appear in the source. Execution is repeated until a clause terminates the loop or until a
return, go, or throw form is encountered which transfers control to a point outside of the loop.
The following actions are exceptions to the linear order of execution:

e All variables are initialized first, regardless of where the establishing clauses appear in the
source. The order of initialization follows the order of these clauses.

Iteration 6-5

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e The code for any initially clauses is collected into one progn in the order in which the
clauses appear in the source. The collected code is executed once in the loop prologue
after any implicit variable initializations.

e The code for any finally clauses is collected into one progn in the order in which the
clauses appear in the source. The collected code is executed once in the loop epilogue
before any implicit values from the accumulation clauses are returned. Explicit returns
anywhere in the source, however, will exit the loop without executing the epilogue code.

e A with clause introduces a variable binding and an optional initial value. The initial
values are calculated in the order in which the with clauses occur.

e Iteration control clauses implicitly perform the following actions:
— initialize variables;
— step variables, generally between each execution of the loop body;

— perform termination tests, generally just before the execution of the loop body.

6.1.1.7 Destructuring

The d-type-spec argument is used for destructuring. If the d-type-spec argument consists solely

of the type fixnum, float, t, or nil, the of-type keyword is optional. The of-type construct is
optional in these cases to provide backwards compatibility; thus, the following two expressions are
the same:

;55 This expression uses the old syntax for type specifiers.
(loop for i fixnum upfrom 3 ...)

;535 This expression uses the new syntax for type specifiers.
(loop for i of-type fixnum upfrom 3 ...)

;; Declare X and Y to be of type VECTOR and FIXNUM respectively.
(loop for (x y) of-type (vector fixnum)
in 1 do ...)

A type specifier for a destructuring pattern is a tree of type specifiers with the same shape as the
tree of variable names, with the following exceptions:

e When aligning the trees, an atom in the tree of type specifiers that matches a cons in the
variable tree declares the same type for each variable in the subtree rooted at the cons.

e A cons in the tree of type specifiers that matches an atom in the tree of variable names is
a compound type specifer.

Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Destructuring allows binding of a set of variables to a corresponding set of values anywhere that
a value can normally be bound to a single variable. During loop expansion, each variable in

the variable list is matched with the values in the values list. If there are more variables in the
variable list than there are values in the values list, the remaining variables are given a value of
nil. If there are more values than variables listed, the extra values are discarded.

To assign values from a list to the variables a, b, and c, the for clause could be used to bind the
variable numlist to the car of the supplied form, and then another for clause could be used to
bind the variables a, b, and c sequentially.

;; Collect values by using FOR constructs.
(loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))
for a of-type integer = (first numlist)
and b of-type integer = (second numlist)
and c of-type float = (third numlist)
collect (list c b a))
— ((4.0 2 1) (8.3 6 5) (10.4 9 8))

Destructuring makes this process easier by allowing the variables to be bound in each loop
iteration. Types can be declared by using a list of type-spec arguments. If all the types are the
same, a shorthand destructuring syntax can be used, as the second example illustrates.

;3 Destructuring simplifies the process.
(loop for (a b c) of-type (integer integer float) in
’((1 2 4.0) (566 8.3) (89 10.4))
collect (list c b a))
— ((4.0 2 1) (8.3 6 5) (10.4 9 8))

;3 If all the types are the same, this way is even simpler.
(loop for (a b c) of-type float in
’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))
collect (list c b a))
— ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))

If destructuring is used to declare or initialize a number of groups of variables into types, the loop
keyword and can be used to simplify the process further. ;; Initialize and declare variables
in parallel by using the AND construct.
(loop with (a b) of-type float = ’(1.0 2.0)
and (c d) of-type integer = ’(3 4)
and (e f)
return (list a b c d e £))
— (1.0 2.0 3 4 NIL NIL)

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = (1 2 3)

Iteration 6-7

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.1.8

do (return (list a b)))
— (1 3)

Note that dotted lists can specify destructuring.

(loop for (x . y) = (1 . 2)
do (return y))
— 2
(loop for ((a . b) (c . d)) of-type ((float . float) (integer . integer)) in
P(((1.2 . 2.4) (3. 4)) ((8.4. 4.6) (5. 6)))
collect (list a b ¢ d))
— ((1.2 2.4 34) (3.4 4.656))

An error of type program-error is signaled (at macro expansion time) if the same variable is
bound twice in any variable-binding clause of a single loop expression. Such variables include
local variables, iteration control variables, and variables found by destructuring.

Restrictions on Side-Effects

See Section 3.6 (Traversal Rules and Side Effects).

6.1.2 Variable Initialization and Stepping Clauses

6.1.2.1

Iteration Control

Iteration control clauses allow direction of loop iteration. The loop keywords for and as designate
iteration control clauses. Iteration control clauses differ with respect to the specification of
termination tests and to the initialization and stepping, of loop variables. Iteration clauses by
themselves do not cause the Loop Facility to return values, but they can be used in conjunction
with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. A wvariable binding has lexical scope unless it is
proclaimed special; thus, by default, the variable can be accessed only by forms that lie textually
within the loop. Stepping assignments are made in the loop body before any other forms are
evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A destructuring list
is a tree whose non-nil atoms are variable names. See Section 6.1.1.7 (Destructuring).

The iteration control clauses for, as, and repeat must precede any other loop clauses, except
initially, with, and named, since they establish variable bindings. When iteration control clauses
are used in a loop, the corresponding termination tests in the loop body are evaluated before any
other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and stepping,
occur sequentially by default. The and construct can be used to connect two or more iteration

6—8 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

clauses when sequential binding and stepping; are not necessary. The iteration behavior of clauses
joined by and is analogous to the behavior of the macro do with respect to do*.

The for and as clauses iterate by using one or more local loop variables that are initialized to
some value and that can be modified or stepped; after each iteration. For these clauses, iteration
terminates when a local variable reaches some supplied value or when some other loop clause
terminates iteration. At each iteration, variables can be stepped; by an increment or a decrement
or can be assigned a new value by the evaluation of a form). Destructuring can be used to assign
values to variables during iteration.

The for and as keywords are synonyms; they can be used interchangeably. There are seven
syntactic formats for these constructs. In each syntactic format, the type of var can be supplied
by the optional type-spec argument. If var is a destructuring list, the type supplied by the type-
spec argument must appropriately match the elements of the list. By convention, for introduces
new iterations and as introduces iterations that depend on a previous iteration specification.

6.1.2.1.1 The for-as-arithmetic subclause

In the for-as-arithmetic subclause, the for or as construct iterates from the value supplied by
form1 to the value supplied by form2 in increments or decrements denoted by form3. Each
expression is evaluated only once and must evaluate to a number. The variable var is bound to
the value of form1 in the first iteration and is stepped; by the value of form3 in each succeeding
iteration, or by 1 if form3 is not provided. The following loop keywords serve as valid prepositions
within this syntax. At least one of the prepositions must be used; and at most one from each line
may be used in a single subclause.

from | downfrom | upfrom
to | downto | upto | below | above

by

The prepositional phrases in each subclause may appear in any order. For example, either
“from x by y” or “by y from x” is permitted. However, because left-to-right order of evalua-
tion is preserved, the effects will be different in the case of side effects. Consider:

(let ((x 1)) (loop for i from x by (incf x) to 10 collect i))
— (13579)
(let ((x 1)) (loop for i by (incf x) from x to 10 collect i))
— (2 4 6 8 10)

The descriptions of the prepositions follow:

from

The loop keyword from specifies the value from which stepping; begins, as supplied by
form1. Stepping; is incremental by default. If decremental stepping; is desired, the
preposition downto or above must be used with form2. For incremental stepping,, the
default from value is 0.

Iteration 6—9

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

downfrom, upfrom

The loop keyword downfrom indicates that the variable var is decreased in decrements
supplied by form3; the loop keyword upfrom indicates that var is increased in increments
supplied by form3.

to

The loop keyword to marks the end value for stepping; supplied in form2. Stepping; is
incremental by default. If decremental stepping; is desired, the preposition downfrom must
be used with form1, or else the preposition downto or above should be used instead of to
with form2.

downto, upto

The loop keyword downto specifies decremental stepping; the loop keyword upto specifies
incremental stepping. In both cases, the amount of change on each step is specified by
form3, and the loop terminates when the variable var passes the value of form2. Since
there is no default for forml in decremental steppingi, a forml value must be supplied
(using from or downfrom) when downto is supplied.

below, above

The loop keywords below and above are analogous to upto and downto respectively. These
keywords stop iteration just before the value of the variable var reaches the value supplied
by form2; the end value of form2 is not included. Since there is no default for forml in
decremental stepping;, a forml value must be supplied (using from or downfrom) when
above is supplied.

by

The loop keyword by marks the increment or decrement supplied by form3. The value of
form3 can be any positive number. The default value is 1.

In an iteration control clause, the for or as construct causes termination when the supplied limit
is reached. That is, iteration continues until the value var is stepped to the exclusive or inclusive
limit supplied by form2. The range is exclusive if form3 increases or decreases var to the value of
form2 without reaching that value; the loop keywords below and above provide exclusive limits.
An inclusive limit allows var to attain the value of form2; to, downto, and upto provide inclusive
limits.

6.1.2.1.1.1 Examples of for-as-arithmetic subclause
;; Print some numbers.
(loop for i from 1 to 3

do (print i))
> 1

6-10 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

> 2
> 3
— NIL

;3 Print every third number.
(loop for i from 10 downto 1 by 3
do (print i))

> 10

> 7

> 4

> 1

— NIL

;; Step incrementally from the default starting value.
(loop for i below 3
do (print i))
> 0
> 1
> 2
— NIL

6.1.2.1.2 The for-as-in-list subclause

In the for-as-in-list subclause, the for or as construct iterates over the contents of a list. It checks
for the end of the list as if by using endp. The variable var is bound to the successive elements

of the list in forml before each iteration. At the end of each iteration, the function step-fun is
applied to the list; the default value for step-fun is cdr. The loop keywords in and by serve as
valid prepositions in this syntax. The for or as construct causes termination when the end of the
list is reached.

6.1.2.1.2.1 Examples of for-as-in-list subclause

;3 Print every item in a list.
(loop for item in ’(1 2 3) do (print item))
> 1
> 2
> 3
— NIL

;; Print every other item in a list.
(loop for item in ’(1 2 3 4 5) by #’cddr
do (print item))
> 1
> 3
> 5
— NIL

Iteration 6-11

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;3 Destructure a list, and sum the x values using fixnum arithmetic.
(loop for (item . x) of-type (t . fixnum) in ’((A . 1) (B . 2) (C . 3))
unless (eq item ’B) sum x)
— 4

6.1.2.1.3 The for-as-on-list subclause

In the for-as-on-list subclause, the for or as construct iterates over a list. It checks for the end of
the list as if by using atom. The variable var is bound to the successive tails of the list in form1.
At the end of each iteration, the function step-fun is applied to the list; the default value for step-
fun is cdr. The loop keywords on and by serve as valid prepositions in this syntax. The for or as
construct causes termination when the end of the list is reached.

6.1.2.1.3.1 Examples of for-as-on-list subclause

;; Collect successive tails of a list.
(loop for sublist on ’(a b c d)
collect sublist)
— ((ABCD) (BCD) (CD) (D))

;; Print a list by using destructuring with the loop keyword ON.
(loop for (item) on ’(1 2 3)
do (print item))
> 1
> 2
> 3
— NIL

6.1.2.1.4 The for-as-equals-then subclause

In the for-as-equals-then subclause the for or as construct initializes the variable var by setting it
to the result of evaluating form1 on the first iteration, then setting it to the result of evaluating
form2 on the second and subsequent iterations. If form2 is omitted, the construct uses forml on
the second and subsequent iterations. The loop keywords = and then serve as valid prepositions in
this syntax. This construct does not provide any termination tests.

6.1.2.1.4.1 Examples of for-as-equals-then subclause

;; Collect some numbers.

(loop for item = 1 then (+ item 10)
for iteration from 1 to 5
collect item)

— (1 11 21 31 41)

6-12 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.2.1.5 The for-as-across subclause

In the for-as-across subclause the for or as construct binds the variable var to the value of each
element in the array vector. The loop keyword across marks the array vector; across is used as a
preposition in this syntax. Iteration stops when there are no more elements in the supplied array
that can be referenced. Some implementations might recognize a the special form in the vector
form to produce more efficient code.

6.1.2.1.5.1 Examples of for-as-across subclause

(loop for char across (the simple-string (find-message channel))
do (write-char char stream))

6.1.2.1.6 The for-as-hash subclause

In the for-as-hash subclause the for or as construct iterates over the elements, keys, and values of
a hash-table. In this syntax, a compound preposition is used to designate access to a hash table.
The variable var takes on the value of each hash key or hash value in the supplied hash-table. The
following loop keywords serve as valid prepositions within this syntax:

being
The keyword being introduces either the Loop schema hash-key or hash-value.

each, the

The loop keyword each follows the loop keyword being when hash-key or hash-value is
used. The loop keyword the is used with hash-keys and hash-values only for ease of
reading. This agreement isn’t required.

hash-key, hash-keys

These loop keywords access each key entry of the hash table. If the name hash-value is
supplied in a using construct with one of these Loop schemas, the iteration can optionally
access the keyed value. The order in which the keys are accessed is undefined; empty slots
in the hash table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash table. If the name hash-key is
supplied in a using construct with one of these Loop schemas, the iteration can optionally
access the key that corresponds to the value. The order in which the keys are accessed is
undefined; empty slots in the hash table are ignored.

using

The loop keyword using introduces the optional key or the keyed value to be accessed.
It allows access to the hash key if iteration is over the hash values, and the hash value if
iteration is over the hash keys.

Iteration 6-13

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

in, of
These loop prepositions introduce hash-table.
In effect
being {each | the} {hash-value | hash-values | hash-key | hash-keys} {in | of}
is a compound preposition.

Iteration stops when there are no more hash keys or hash values to be referenced in the supplied
hash-table.

6.1.2.1.7 The for-as-package subclause

In the for-as-package subclause the for or as construct iterates over the symbols in a package. In
this syntax, a compound preposition is used to designate access to a package. The variable var
takes on the value of each symbol in the supplied package. The following loop keywords serve as
valid prepositions within this syntax:

being

The keyword being introduces either the Loop schema symbol, present-symbol, or
external-symbol.

each, the

The loop keyword each follows the loop keyword being when symbol, present-symbol, or
external-symbol is used. The loop keyword the is used with symbols, present-symbols,
and external-symbols only for ease of reading. This agreement isn’t required.

present-symbol, present-symbols

These Loop schemas iterate over the symbols that are present in a package. The package
to be iterated over is supplied in the same way that package arguments to find-package
are supplied. If the package for the iteration is not supplied, the current package is used.
If a package that does not exist is supplied, an error of type package-error is signaled.

symbol, symbols

These Loop schemas iterate over symbols that are accessible in a given package. The
package to be iterated over is supplied in the same way that package arguments to
find-package are supplied. If the package for the iteration is not supplied, the cur-
rent package is used. If a package that does not exist is supplied, an error of type
package-error is signaled.

external-symbol, external-symbols

These Loop schemas iterate over the external symbols of a package. The package to be
iterated over is supplied in the same way that package arguments to find-package are

6—14 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

supplied. If the package for the iteration is not supplied, the current package is used. If a
package that does not exist is supplied, an error of type package-error is signaled.

in, of
These loop prepositions introduce package.
In effect

being {each |the} {symbol |symbols ‘present—symbol |present—symbols |externa1—symbol|
external-symbols} {in | of}

is a compound preposition.

Iteration stops when there are no more symbols to be referenced in the supplied package.

6.1.2.1.7.1 Examples of for-as-package subclause

6.1.2.2

(let ((*package* (make-package "TEST-PACKAGE-1")))
;; For effect, intern some symbols
(read-from-string "(THIS IS A TEST)")

(export (intern "THIS"))
(loop for x being each present-symbol of *package*
do (print x)))
> A
> TEST
> THIS
> IS
— NIL

Local Variable Initializations

When a loop form is executed, the local variables are bound and are initialized to some value.
These local variables exist until loop iteration terminates, at which point they cease to exist.
Implicit variables are also established by iteration control clauses and the into preposition of
accumulation clauses.

The with construct initializes variables that are local to a loop. The variables are initialized

one time only. If the optional type-spec argument is supplied for the variable var, but there

is no related expression to be evaluated, var is initialized to an appropriate default value for

its type. For example, for the types t, number, and float, the default values are nil, 0, and

0.0 respectively. The consequences are undefined if a type-spec argument is supplied for var

if the related expression returns a value that is not of the supplied type. By default, the with
construct initializes variables sequentially; that is, one variable is assigned a value before the
next expression is evaluated. However, by using the loop keyword and to join several with clauses,

Iteration 6-15

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

initializations can be forced to occur in parallel; that is, all of the supplied forms are evaluated,
and the results are bound to the respective variables simultaneously.

Sequential binding is used when it is desireable for the initialization of some variables to depend
on the values of previously bound variables. For example, suppose the variables a, b, and c are to
be bound in sequence:

(loop with a = 1
with b = (+ a 2)
with ¢ = (+ b 3)
return (list a b c¢))
— (1 3 6)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let* ((a 1)
(b +a2)
(c (+b3)))
(tagbody

(next-loop (return (list a b c¢))
(go next-loop)
end-loop))))

If the values of previously bound variables are not needed for the initialization of other local
variables, an and clause can be used to specify that the bindings are to occur in parallel:

(loop with a = 1

and b = 2

and ¢ = 3

return (list a b c¢))
— (12 3)

The execution of the above loop is equivalent to the execution of the following code:

(block nil
(let ((a 1)
(b 2)
(c 30
(tagbody
(next-loop (return (list a b c))
(go next-loop)
end-loop))))

6.1.2.2.1 Examples of WITH clause

;; These bindings occur in sequence.

6-16 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(loop with a = 1
with b = (+ a 2)
with ¢ = (+ b 3)
return (list a b c¢))
— (1 3 6)

;; These bindings occur in parallel.
(setq a 5 b 10)
— 10
(loop with a = 1
and b = (+ a 2)
and ¢ = (+ b 3)
return (list a b c¢))
— (17 13)

;; This example shows a shorthand way to declare local variables
;; that are of different types.
(loop with (a b c) of-type (float integer float)
return (format nil "“A “A “A" a b c))
— "0.0 0 0.0"

;3 This example shows a shorthand way to declare local variables
;; that are the same type.
(loop with (a b c) of-type float
return (format nil ""A "A A" a b c))
— "0.0 0.0 0.0"

6.1.3 Value Accumulation Clauses

The constructs collect, collecting, append, appending, nconc, nconcing, count, counting, maximize,
maximizing, minimize, minimizing, sum, and summing, allow values to be accumulated in a loop.

The constructs collect, collecting, append, appending, nconc, and nconcing, designate clauses
that accumulate values in lists and return them. The constructs count, counting, maximize,
maximizing, minimize, minimizing, sum, and summing designate clauses that accumulate and return
numerical values.

During each iteration, the constructs collect and collecting collect the value of the supplied
form into a list. When iteration terminates, the list is returned. The argument var is set to the
list of collected values; if var is supplied, the loop does not return the final list automatically. If
var is not supplied, it is equivalent to supplying an internal name for var and returning its value
in a finally clause. The var argument is bound as if by the construct with. No mechanism is
provided for declaring the type of var; it must be of type list.

The constructs append, appending, nconc, and nconcing are similar to collect except that the
values of the supplied form must be lists.

Iteration 6—17

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

e The append keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function append.

e The nconc keyword causes its list values to be concatenated into a single list, as if they
were arguments to the function nconc.

The argument var is set to the list of concatenated values; if var is supplied, loop does not
return the final list automatically. The var argument is bound as if by the construct with. A type
cannot be supplied for var; it must be of type list. The construct nconc destructively modifies its
argument lists.

The count construct counts the number of times that the supplied form returns true. The ar-
gument var accumulates the number of occurrences; if var is supplied, loop does not return the
final count automatically. The var argument is bound as if by the construct with to a zero of the
appropriate type. Subsequent values (including any necessary coercions) are computed as if by
the function 1+. If into var is used, a type can be supplied for var with the type-spec argument;
the consequences are unspecified if a nonnumeric type is supplied. If there is no into variable, the
optional type-spec argument applies to the internal variable that is keeping the count. The default
type is implementation-dependent; but it must be a supertype of type fixnum.

The maximize and minimize constructs compare the value of the supplied form obtained during
the first iteration with values obtained in successive iterations. The maximum (for maximize) or
minimum (for minimize) value encountered is determined (as if by the function max for maximize
and as if by the function min for minimize) and returned. If the maximize or minimize clause

is never executed, the accumulated value is unspecified. The argument var accumulates the
maximum or minimum value; if var is supplied, loop does not return the maximum or minimum
automatically. The var argument is bound as if by the construct with. If into var is used, a

type can be supplied for var with the type-spec argument; the consequences are unspecified if a
nonnumeric type is supplied. If there is no into variable, the optional type-spec argument applies
to the internal variable that is keeping the maximum or minimum value. The default type is
implementation-dependent; but it must be a supertype of type real.

The sum construct forms a cumulative sum of the successive primary values of the supplied

form at each iteration. The argument var is used to accumulate the sum; if var is supplied, loop
does not return the final sum automatically. The var argument is bound as if by the construct
with to a zero of the appropriate type. Subsequent values (including any necessary coercions)
are computed as if by the function +. If into var is used, a type can be supplied for var with
the type-spec argument; the consequences are unspecified if a nonnumeric type is supplied. If
there is no into variable, the optional type-spec argument applies to the internal variable that is
keeping the sum. The default type is implementation-dependent; but it must be a supertype of
type number.

If into is used, the construct does not provide a default return value; however, the variable is
available for use in any finally clause.

Certain kinds of accumulation clauses can be combined in a loop if their destination is the
same (the result of loop or an into var) because they are considered to accumulate conceptually

6—18 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

compatible quantities. In particular, any elements of following sets of accumulation clauses can be
mixed with other elements of the same set for the same destination in a loop form:

® collect, append, nconc
° sum, count

® maximize, minimize

;; Collect every name and the kids in one list by using
;; COLLECT and APPEND.
(loop for name in ’(fred sue alice joe june)
for kids in ’((bob ken) () () (kris sunshine) ())
collect name
append kids)
— (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)

Any two clauses that do not accumulate the same type of object can coexist in a loop only if each
clause accumulates its values into a different variable.

6.1.3.1 Examples of COLLECT clause

;3 Collect all the symbols in a list.
(loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)
when (symbolp i) collect i)
— (BIRD TURTLE HORSE CAT)

;3 Collect and return odd numbers.
(loop for i from 1 to 10
if (oddp i) collect i)
— (13579

;3 Collect items into local variable, but don’t return them.
(loop for i in ’(a b ¢ d) by #’cddr
collect i into my-list
finally (print my-list))
> (A C)
— NIL

Iteration 6—19

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.3.2 Examples of APPEND and NCONC clauses

;3 Use APPEND to concatenate some sublists.
(loop for x in ’((a) (b) ((c)))
append x)
— (A B (C))

;3 NCONC some sublists together. Note that only lists made by the
;3 call to LIST are modified.
(loop for i upfrom O
as x in ’(a b (c))
nconc (if (evenp i) (list x) nil))
— (A (©C))

6.1.3.3 Examples of COUNT clause

(loop for i in ’(a b nil ¢ nil d e)
count i)
— 5

6.1.3.4 Examples of MAXIMIZE and MINIMIZE clauses

(loop for i in (2 1 5 3 4)
maximize i)
— 5
(loop for i in (2 1 5 3 4)
minimize i)
— 1

;3 In this example, FIXNUM applies to the internal variable that holds
;; the maximum value.
(setq series ’(1.2 4.3 5.7))
— (1.2 4.3 5.7)
(loop for v in series
maximize (round v) of-type fixnum)
— 6

;; In this example, FIXNUM applies to the variable RESULT.
(loop for v of-type float in series
minimize (round v) into result of-type fixnum
finally (return result))

6—20 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.3.5 Examples of SUM clause

(loop for i of-type fixnum in ’(1 2 3 4 5)
sum i)
— 15
(setq series (1.2 4.3 5.7))
— (1.2 4.3 5.7)
(loop for v in series
sum (* 2.0 v))
— 22.4

6.1.4 Termination Test Clauses

The repeat construct causes iteration to terminate after a specified number of times. The loop
body executes n times, where n is the value of the expression form. The form argument is evalu-
ated one time in the loop prologue. If the expression evaluates to 0 or to a negative number, the
loop body is not evaluated.

The constructs always, never, thereis, while, until, and the macro loop-finish allow conditional
termination of iteration within a loop.

The constructs always, never, and thereis provide specific values to be returned when a loop
terminates. Using always, never, or thereis in a loop with value accumulation clauses that are
not into causes an error of type program-error to be signaled (at macro expansion time). Since
always, never, and thereis use the return-from special operator to terminate iteration, any
finally clause that is supplied is not evaluated when exit occurs due to any of these constructs.
In all other respects these constructs behave like the while and until constructs.

The always construct takes one form and terminates the loop if the form ever evaluates to nil;
in this case, it returns nil. Otherwise, it provides a default return value of t. If the value of the
supplied form is never nil, some other construct can terminate the iteration.

The never construct terminates iteration the first time that the value of the supplied form is
non-nil; the loop returns nil. If the value of the supplied form is always nil, some other construct
can terminate the iteration. Unless some other clause contributes a return value, the default value
returned is t.

The thereis construct terminates iteration the first time that the value of the supplied form

is mon-nil; the loop returns the value of the supplied form. If the value of the supplied form is
always nil, some other construct can terminate the iteration. Unless some other clause contributes
a return value, the default value returned is nil.

There are two differences between the thereis and until constructs:

e The until construct does not return a value or nil based on the value of the supplied
form.

Iteration 6—21

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.1

e The until construct executes any finally clause. Since thereis uses the return-from
special operator to terminate iteration, any finally clause that is supplied is not evalu-
ated when exit occurs due to thereis.

The while construct allows iteration to continue until the supplied form evaluates to false. The
supplied form is reevaluated at the location of the while clause.

The until construct is equivalent to while (not form).... If the value of the supplied form is
non-nil, iteration terminates.

Termination-test control constructs can be used anywhere within the loop body. The termination
tests are used in the order in which they appear. If an until or while clause causes termination,
any clauses that precede it in the source are still evaluated. If the until and while constructs
cause termination, control is passed to the loop epilogue, where any finally clauses will be
executed.

There are two differences between the never and until constructs:
e The until construct does not return t or nil based on the value of the supplied form.

e The until construct does not bypass any finally clauses. Since never uses the
return-from special operator to terminate iteration, any finally clause that is supplied is
not evaluated when exit occurs due to never.

In most cases it is not necessary to use loop-finish because other loop control clauses terminate
the loop. The macro loop-finish is used to provide a normal exit from a nested conditional inside
a loop. Since loop-finish transfers control to the loop epilogue, using loop-finish within a finally
expression can cause infinite looping.

Examples of REPEAT clause

(loop repeat 3
do (format t "“&What I say three times is true.”%"))

> What I say three times is true.
> What I say three times is true.
> What I say three times is true.
— NIL

(loop repeat -15

do (format t "What you see is what you expect”%"))

— NIL

6—22 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.2

Examples of ALWAYS, NEVER, and THEREIS clauses

;; Make sure I is always less than 11 (two ways).
;; The FOR construct terminates these loops.
(loop for i from O to 10
always (< i 11))
— T
(loop for i from O to 10
never (> i 11))
— T

;3 If I exceeds 10 return I; otherwise, return NIL.
;; The THEREIS construct terminates this loop.
(loop for i from O
thereis (when (> i 10) i))
— 11

;55 The FINALLY clause is not evaluated in these examples.
(loop for i from O to 10
always (< i 9)
finally (print "you won’t see this"))
— NIL
(loop never t
finally (print "you won’t see this"))
— NIL
(loop thereis "Here is my value"
finally (print "you won’t see this"))
— "Here is my value"

;; The FOR construct terminates this loop, so the FINALLY clause
;3 1s evaluated.
(loop for i from 1 to 10
thereis (> i 11)
finally (prinl ’got-here))
> GOT-HERE
— NIL

;3 If this code could be used to find a counterexample to Fermat’s
;3 last theorem, it would still not return the value of the

;; counterexample because all of the THEREIS clauses in this example
;; only return T. But if Fermat is right, that won’t matter

;; because this won’t terminate.

(loop for z upfrom 2

Iteration

6—23

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.4.3

thereis
(loop for n upfrom 3 below (log z 2)
thereis
(loop for x below z
thereis
(loop for y below z
thereis (= (+ (expt x n) (expt y n))
(expt z n))))))

Examples of WHILE and UNTIL clauses

(loop while (hungry-p) do (eat))

;3 UNTIL NOT is equivalent to WHILE.
(loop until (not C(hungry-p)) do (eat))

;3 Collect the length and the items of STACK.
(let ((stack ’(abcde £)))
(loop for item = (length stack) then (pop stack)
collect item
while stack))
— (ABCDETF)

;; Use WHILE to terminate a loop that otherwise wouldn’t terminate.
;; Note that WHILE occurs after the WHEN.
(loop for i fixnum from 3
when (oddp i) collect i
while (< i 5))
— (3 5)

6.1.5 Unconditional Execution Clauses

The do and doing constructs evaluate the supplied forms wherever they occur in the expanded
form of loop. The form argument can be any compound form. Each form is evaluated in every
iteration. Because every loop clause must begin with a loop keyword, the keyword do is used when
no control action other than execution is required.

The return construct takes one form. Any wvalues returned by the form are immediately returned
by the loop form. It is equivalent to the clause do (return-from block-name value), where block-
name is the name specified in a named clause, or nil if there is no named clause.

6—24 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.5.1 Examples of unconditional execution

6.1.6

;3 Print numbers and their squares.
;; The DO construct applies to multiple forms.
(loop for i from 1 to 3
do (print i)
(print (x i 1)))

v vVvvVvyvVvVvVvyv
© WP NP

— NIL

Conditional Execution Clauses

The if, when, and unless constructs establish conditional control in a loop. If the test passes, the
succeeding loop clause is executed. If the test does not pass, the succeeding clause is skipped, and
program control moves to the clause that follows the loop keyword else. If the test does not pass
and no else clause is supplied, control is transferred to the clause or construct following the entire
conditional clause.

If conditional clauses are nested, each else is paired with the closest preceding conditional clause
that has no associated else or end.

In the if and when clauses, which are synonymous, the test passes if the value of form is true.
In the unless clause, the test passes if the value of form is false.

Clauses that follow the test expression can be grouped by using the loop keyword and to produce
a conditional block consisting of a compound clause.

The loop keyword it can be used to refer to the result of the test expression in a clause. Use the

loop keyword it in place of the form in a return clause or an accumulation clause that is inside a
conditional execution clause. If multiple clauses are connected with and, the it construct must be
in the first clause in the block.

The optional loop keyword end marks the end of the clause. If this keyword is not supplied, the
next loop keyword marks the end. The construct end can be used to distinguish the scoping of
compound clauses.

Iteration 6—25

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.6.1 Examples of WHEN clause

;; Signal an exceptional condition.
(loop for item in (1 2 3 a 4 5)
when (not (numberp item))
return (cerror "enter new value" "non-numeric value: ~s" item))
Error: non-numeric value: A

;; The previous example is equivalent to the following one.
(loop for item in (1 2 3 a 4 5)
when (not (numberp item))
do (return
(cerror "Enter new value" "non-numeric value: ~s" item)))
Error: non-numeric value: A

;; This example parses a simple printed string representation from

;3 BUFFER (which is itself a string) and returns the index of the

;3 closing double-quote character.

(let ((buffer "\"a\" \"b\""))
(loop initially (unless (char= (char buffer 0) #\")
(loop-finish))

for i of-type fixnum from 1 below (length (the string buffer))
when (char= (char buffer i) #\")
return i))

— 2

;3 The collected value is returned.
(loop for i from 1 to 10
when (> i 5)
collect i
finally (prinl ’got-here))
> GOT-HERE
— (67 8 9 10)

;; Return both the count of collected numbers and the numbers.
(loop for i from 1 to 10
when (> i 5)
collect i into number-list
and count i into number-count
finally (return (values number-count number-list)))
— 5, (6 78 9 10)

6.1.7 Miscellaneous Clauses

6—26 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.7.1

Control Transfer Clauses

The named construct establishes a name for an implicit block surrounding the entire loop so that
the return-from special operator can be used to return values from or to exit loop. Only one
name per loop form can be assigned. If used, the named construct must be the first clause in the
loop expression.

The return construct takes one form. Any values returned by the form are immediately returned
by the loop form. This construct is similar to the return-from special operator and the return
macro. The return construct does not execute any finally clause that the loop form is given.

6.1.7.1.1 Examples of NAMED clause

6.1.7.2

;; Just name and return.
(loop named max
for i from 1 to 10
do (print i)
do (return-from max ’done))
> 1
— DONE

Initial and Final Execution
The initially and finally constructs evaluate forms that occur before and after the loop body.

The initially construct causes the supplied compound-forms to be evaluated in the loop pro-
logue, which precedes all loop code except for initial settings supplied by constructs with, for, or
as. The code for any initially clauses is executed in the order in which the clauses appeared in
the loop.

The finally construct causes the supplied compound-forms to be evaluated in the loop epilogue
after normal iteration terminates. The code for any finally clauses is executed in the order in
which the clauses appeared in the loop. The collected code is executed once in the loop epilogue
before any implicit values are returned from the accumulation clauses. An explicit transfer of
control (e.g., by return, go, or throw) from the loop body, however, will exit the loop without
executing the epilogue code.

Clauses such as return, always, never, and thereis can bypass the finally clause. return (or
return-from, if the named option was supplied) can be used after finally to return values from

a loop. Such an explicit return inside the finally clause takes precedence over returning the
accumulation from clauses supplied by such keywords as collect, nconc, append, sum, count,
maximize, and minimize; the accumulation values for these preempted clauses are not returned by
loop if return or return-from is used.

Iteration 6—27

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

6.1.8 Examples of Miscellaneous Loop Features

(let ((1 0)) ; no loop keywords are used
(loop (incf i) (if (= i 3) (return i)))) — 3
(let ((1 0)(F 0))
(tagbody
(loop (incf j 3) (imcf i) (if (= i 3) (go exit)))
exit)
3 =9

In the following example, the variable x is stepped before y is stepped; thus, the value of y reflects
the updated value of x:

(loop for x from 1 to 10
for y = nil then x
collect (list x y))

— ((1 NIL) (2 2) (33) (44) (65) (686) (17) (88) (99) (10 10))

In this example, x and y are stepped in parallel:

(loop for x from 1 to 10
and y = nil then x
collect (list x y))

— ((1 NIL) (21) (32) (43) (64) (65) (76) (87) (98) (10 9))

6.1.8.1 Examples of clause grouping

;3 Group conditional clauses.
(loop for i in ’(1 324 2345 323 2 4 235 252)
when (oddp i)
do (print i)
and collect i into odd-numbers
and do (terpri)

else ; I is even.
collect i into even-numbers
finally
(return (values odd-numbers even-numbers)))
> 1
>
> 2345
>
> 323
>
> 235

— (1 2345 323 235), (324 2 4 252)

6—28 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

;; Collect numbers larger than 3.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
collect it) ; IT refers to (and (> i 3) i).
— (4 5 6)

;; Find a number in a list.
(loop for i in ’(1 2 3 4 5 6)
when (and (> i 3) i)
return it)
— 4

;; The above example is similar to the following ome.
(loop for i in ’(1 2 3 4 5 6)
thereis (and (> i 3) 1))
— 4

;; Nest conditional clauses.
(let ((list ’(0 3.0 apple 4 5 9.8 orange banana)))
(loop for i in list
when (numberp i)
when (floatp i)
collect i into float-numbers
else ; Not (floatp 1)
collect i into other-numbers
else ; Not (numberp i)
when (symbolp i)
collect i into symbol-list
else ; Not (symbolp i)
do (error "found a funny value in list ~S, value ~“S7%" list i)
finally (return (values float-numbers other-numbers symbol-list))))
— (3.0 9.8), (0 4 5), (APPLE ORANGE BANANA)

;5 Without the END preposition, the last AND would apply to the
;; inner IF rather than the outer one.
(loop for x from O to 3
do (print x)
if (zerop (mod x 2))
do (princ " a"
and if (zerop (floor x 2))
do (princ " b")
end

Iteration 6—29

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

and do (princ " c"))

>0 abc
> 1

>2 ac
> 3

— NIL

6.1.9 Notes about Loop

Types can be supplied for loop variables. It is not necessary to supply a type for any variable, but
supplying the type can ensure that the variable has a correctly typed initial value, and it can also
enable compiler optimizations (depending on the implementation).

The clause repeat n ... is roughly equivalent to a clause such as
(loop for internal-variable downfrom (- n 1) to 0 ...)
but in some implementations, the repeat construct might be more efficient.

Within the executable parts of the loop clauses and around the entire loop form, variables can be
bound by using let.

Use caution when using a variable named IT (in any package) in connection with loop, since it is
a loop keyword that can be used in place of a form in certain contexts.

There is no standardized mechanism for users to add extensions to loop.

6—30 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dO, dox Macro

Syntax:
do ({var | (var [init-form [step-form]])}*)
(end-test-form {result-form}*)
{declaration}* {tag | statement}*

— {result}*

do* ({var | (var [init-form [step-form]])}*)
(end-test-form {result-form}*)
{declaration}* {tag | statement}*

— {result}*

Arguments and Values:
var—a symbol.

init-form—a, form.

step-form—a, form.

end-test-form—a form.

result-forms—an implicit progn.

declaration—a declare expression; not evaluated.

tag—a go tag; not evaluated.

statement—a, compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the wvalues returned by the result-forms.

Description:
do iterates over a group of statements while a test condition holds. do accepts an arbitrary
number of iteration vars which are bound within the iteration and stepped in parallel. An initial
value may be supplied for each iteration variable by use of an init-form. Step-forms may be used
to specify how the vars should be updated on succeeding iterations through the loop. Step-
forms may be used both to generate successive values or to accumulate results. If the end-test-
form condition is met prior to an execution of the body, the iteration terminates. Tags label
statements.

do* is exactly like do except that the bindings and steppings of the vars are performed sequen-
tially rather than in parallel.

Iteration 6—31

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

Before the first iteration, all the init-forms are evaluated, and each var is bound to the value of its
respective init-form, if supplied. This is a binding, not an assignment; when the loop terminates,
the old values of those variables will be restored. For do, all of the init-forms are evaluated before
any var is bound. The init-forms can refer to the bindings of the vars visible before beginning
execution of do. For do*, the first init-form is evaluated, then the first var is bound to that value,
then the second init-form is evaluated, then the second var is bound, and so on; in general, the kth
init-form can refer to the new binding of the jth var if j < k, and otherwise to the old binding of
the jth var.

At the beginning of each iteration, after processing the variables, the end-test-form is evaluated. If
the result is false, execution proceeds with the body of the do (or do*) form. If the result is true,
the result-forms are evaluated in order as an implicit progn, and then do or do* returns.

At the beginning of each iteration other than the first, vars are updated as follows. All the step-
forms, if supplied, are evaluated, from left to right, and the resulting values are assigned to the
respective vars. Any var that has no associated step-form is not assigned to. For do, all the step-
forms are evaluated before any var is updated; the assignment of values to vars is done in parallel,
as if by psetq. Because all of the step-forms are evaluated before any of the vars are altered, a
step-form when evaluated always has access to the old values of all the vars, even if other step-
forms precede it. For do*, the first step-form is evaluated, then the value is assigned to the first
var, then the second step-form is evaluated, then the value is assigned to the second var, and

so on; the assignment of values to variables is done sequentially, as if by setq. For either do or
do*, after the vars have been updated, the end-test-form is evaluated as described above, and the
iteration continues.

The remainder of the do (or do*) form constitutes an implicit tagbody. Tags may appear within
the body of a do loop for use by go statements appearing in the body (but such go statements
may not appear in the variable specifiers, the end-test-form, or the result-forms). When the end
of a do body is reached, the next iteration cycle (beginning with the evaluation of step-forms)
occurs.

An implicit block named nil surrounds the entire do (or do*) form. A return statement may be
used at any point to exit the loop immediately.

Init-form is an initial value for the var with which it is associated. If init-form is omitted, the
initial value of var is nil. If a declaration is supplied for a var, init-form must be consistent with
the declaration.

Declarations can appear at the beginning of a do (or do*) body. They apply to code in the do (or
do*) body, to the bindings of the do (or do*) vars, to the step-forms, to the end-test-form, and to
the result-forms.

Examples:
(do ((temp-one 1 (1+ temp-one))

(temp-two 0 (1- temp-two)))
((> (- temp-one temp-two) 5) temp-one)) — 4

6—32 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

(do ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) — 3

(do* ((temp-one 1 (1+ temp-one))
(temp-two O (1+ temp-one)))
((= 3 temp-two) temp-one)) — 2

(do ((O (+3 DN
(nil) ;Do forever.
(format t "~JInput “D:" j)
(let ((item (read)))
(if (null item) (return) ;Process items until NIL seen.
(format t "“&Output “D: “S" j item))))
Input O: banana
Output O: BANANA
Input 1: (57 boxes)
Output 1: (57 BOXES)
Input 2: NIL
— NIL

AR VAR VAR VARV,

(setq a-vector (vector 1 nil 3 nil))

(do ((1 0 (+ 1 1)) ;Sets every null element of a-vector to zero.
(n (array-dimension a-vector 0)))
((=1in))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0))) — NIL
a-vector — #(1 0 3 0)

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

is an example of parallel assignment to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succeeding iterations, oldx contains the value
that x had on the previous iteration.

(do ((x foo (cdr x))
(y bar (cdr y))
(z () (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #’f foo bar). The step computation for z is an example of the

Iteration 6—33

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do, dox

fact that variables are stepped in parallel. Also, the body of the loop is empty.

(defun list-reverse (list)
(do ((x list (cdr x))
(y >0 (comns (car x) y)))
((endp %) y)))

As an example of nested iterations, consider a data structure that is a list of conses. The car
of each cons is a list of symbols, and the cdr of each cons is a list of equal length containing
corresponding values. Such a data structure is similar to an association list, but is divided into

“frames”; the overall structure resembles a rib-cage. A lookup function on such a data structure
might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((aull r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v)))))) — RIBCAGE-LOOKUP

See Also:

other iteration functions (dolist, dotimes, and loop) and more primitive functionality (tagbody,
g07kﬂock,return,let7and.setq)

Notes:

If end-test-form is nil, the test will never succeed. This provides an idiom for “do forever”: the
body of the do or do* is executed repeatedly. The infinite loop can be terminated by the use of
return, return-from, go to an outer level, or throw.

A do form may be explained in terms of the more primitive forms block, return, let, loop,
tagbody, and psetq as follows:

(block nil
(let ((varl init1)
(var2 init2)

(varn initn))
declarations
(loop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

;Aén stepn))))

6—34 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

do* is similar, except that let* and setq replace the let and psetq, respectively.

dotimes Macro

Syntax:

dotimes (var count-form [result-form)) {declaration}* {tag | statement}*
— {result}*

Arguments and Values:
var—a symbol.

count-form—a, form.

result-form—a form.

declaration—a declare ezpression; not evaluated.

tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:
dotimes iterates over a series of integers.

dotimes evaluates count-form, which should produce an integer. If count-form is zero or negative,
the body is not executed. dotimes then executes the body once for each integer from 0 up to but
not including the value of count-form, in the order in which the tags and statements occur, with
var bound to each integer. Then result-form is evaluated. At the time result-form is processed, var
is bound to the number of times the body was executed. Tags label statements.

An implicit block named nil surrounds dotimes. return may be used to terminate the loop
immediately without performing any further iterations, returning zero or more values.

The body of the loop is an implicit tagbody; it may contain tags to serve as the targets of go
statements. Declarations may appear before the body of the loop.

The scope of the binding of var does not include the count-form, but the result-form is included.

It is implementation-dependent whether dotimes establishes a new binding of var on each itera-
tion or whether it establishes a binding for var once at the beginning and then assigns it on any
subsequent iterations.

Iteration 6—35

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

Examples:

(dotimes (temp-one 10 temp-one)) — 10

(setq temp-two 0) — O

(dotimes (temp-one 10 t) (incf temp-two)) — T
temp-two — 10

Here is an example of the use of dotimes in processing strings:

;55 True if the specified subsequence of the string is a
;5; palindrome (reads the same forwards and backwards).
(defun palindromep (string &optional
(start 0)
(end (length string)))
(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))
(char string (- end k 1)))
(return nil))))
(palindromep "Able was I ere I saw Elba") — T
(palindromep "A man, a plan, a canal--Panama!") — NIL
(remove-if-not #’alpha-char-p ;Remove punctuation.
"A man, a plan, a canal--Panama!")
— "AmanaplanacanalPanama"
(palindromep
(remove-if-not #’alpha-char-p
"A man, a plan, a canal--Panama!")) — T
(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) — T
(palindromep
(remove-if-not
#’alpha-char-p
"A man, a plan, a cat, a ham, a yak,
a yam, a hat, a canal--Panama!")) — T

See Also:
do, dolist, tagbody

Notes:

go may be used within the body of dotimes to transfer control to a statement labeled by a tag.

6—36 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

dolist

dolist Macro

Syntax:

dolist (var list-form [result-form]) {declaration}* {tag | statement}*
— {result}*

Arguments and Values:
var—a symbol.

list-form—a. form.

result-form—a. form.

declaration—a declare expression; not evaluated.

tag—a go tag; not evaluated.

statement—a compound form; evaluated as described below.

results—if a return or return-from form is executed, the values passed from that form; other-
wise, the values returned by the result-form or nil if there is no result-form.

Description:

dolist iterates over the elements of a list. The body of dolist is like a tagbody. It consists of a
series of tags and statements.

dolist evaluates list-form, which should produce a list. It then executes the body once for each
element in the list, in the order in which the tags and statements occur, with var bound to the
element. Then result-form is evaluated. tags label statements.

At the time result-form is processed, var is bound to nil.

An implicit block named nil surrounds dolist. return may be used to terminate the loop immedi-
ately without performing any further iterations, returning zero or more values.

The scope of the binding of var does not include the list-form, but the result-form is included.

It is implementation-dependent whether dolist establishes a new binding of var on each iteration
or whether it establishes a binding for var once at the beginning and then assigns it on any
subsequent iterations.

Examples:

(setq temp-two ’()) — NIL
(dolist (temp-one ’(1 2 3 4) temp-two) (push temp-one temp-two)) — (4 3 2 1)

(setq temp-two 0) — O

Iteration 6—37

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

(dolist (temp-one ’(1 2 3 4)) (incf temp-two)) — NIL
temp-two — 4

(dolist (x ’(a b ¢ d)) (prinil x) (princ " "))

>ABCD
— NIL
See Also:
do, dotimes, tagbody, Section 3.6 (Traversal Rules and Side Effects)
Notes:
go may be used within the body of dolist to transfer control to a statement labeled by a tag.
lOOp Macro
Syntax:

The “simple” loop form:

loop {compound-form}* — {result}*

The “extended” loop form:

loop [|name-clause] {|variable-clause}* {|main-clause}* — {result}*
name-clause::=named name
variable-clause::= | with-clause | |initial-final | |for-as-clause
with-clause::=with varl [type-spec| [= form1]| {and var2 [type-spec] [= form2]}*
main-clause::=| unconditional | |accumulation | | conditional | |termination-test | |initial-final
initial-final ::=initially {compound-form}™ | finally {compound-form}™
unconditional::={do | doing} {compound-form}* | return {form | it}
accumulation::=| list-accumulation | | numeric-accumulation

/ist—accumu/ation:::{collect | collecting | append | appending | nconc nconcing} {form | it}
[into simple-var]
numeric-accumulation::={count | counting | sum | summing |
maximize ‘ maximizing | minimize | minimizing} {form | it}

[into simple-var] [type-spec]

6—38 Programming Language—Common Lisp

Version 15.17R, X3J13/94-101R.
Fri 12-Aug-1994 6:35pm EDT

loop

conditional::={if | when | unless} form |selectable-clause {and |selectable-clause}*
[else |selectable-clause {and |selectable-clause}*|
[end]

selectable-clause::= | unconditional | |accumulation | | conditional
termination-test::=while form | until form | repeat form | always form | never form | thereis form
for-as-clause::={for | as} |for-as-subclause {and |for-as-subclause}*

for-as-subclause::=| for-as-arithmetic | | for-as-in-list | | for-as-on-list | | for-as-equals-then |
Lfor-as-across | | for-as-hash | | for-as-package

for-as-arithmetic::=var [type-spec| | for-as-arithmetic-subclause
for-as-arithmetic-subclause::= | arithmetic-up | | arithmetic-downto | | arithmetic-downfrom
arithmetic-up::=[{from | upfrom} form1 | {to | upto | below} form2 | by form3]"
arithmetic-downto::=[{from form1}' | {{downto | above} form2}" | by form3]

arithmetic-downfrom::=[{downfrom forml}1